Advertisement

Journal of Hydrodynamics

, Volume 27, Issue 4, pp 579–586 | Cite as

A cavitation aggressiveness index within the Reynolds averaged Navier Stokes methodology for cavitating flows

  • P. Koukouvinis
  • G. Bergeles
  • M. GavaisesEmail author
Article

Abstract

The paper proposes a methodology within the Reynolds averaged Navier Stokes (RANS) solvers for cavitating flows capable of predicting the flow regions of bubble collapse and the potential aggressiveness to material damage. An aggressiveness index is introduced, called cavitation aggressiveness index (CAI) based on the total derivative of pressure which identifies surface areas exposed to bubble collapses, the index is tested in two known cases documented in the open literature and seems to identify regions of potential cavitation damage.

Key words

cavitation aggressiveness index (CAI) cavitation erosion multiphase cavitating flows 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    BRENNEN C. E. Cavitation and bubble dynamics[M]. New York, USA: Oxford University Press, 1995.zbMATHGoogle Scholar
  2. [2]
    LEIGHTON T. G. The acoustic bubble[M]. London, UK: Academic Press, 1994.Google Scholar
  3. [3]
    HAMMITT F. G. Cavitation and multiphase flow phenomena[M]. New York, USA: McGraw-Hill, 1980.Google Scholar
  4. [4]
    KIM K. H., CHAHINE G. and FRANC J. P. et al. Advanced experimental and numerical techniques for cavitation erosion prediction[M]. Dordrecht, The Netherlands: Springer, 2014, 3–20.CrossRefGoogle Scholar
  5. [5]
    KEDRINSKII V. K. Bubble cluster, cumulative jets, and cavitation erosion[J]. Journal of Applied Mechanics and Technical Physics, 1996, 37(4): 476–483.MathSciNetCrossRefGoogle Scholar
  6. [6]
    PATELLA R. F., CHALLIER G. and REBOUD J. L. Cavitation erosion mechanism: numerical simulations of the interaction between pressure waves and solid boundaries[C]. CAV2001: Fourth International Symposium on Cavitation. Pasadena, CA, USA, 2001.Google Scholar
  7. [7]
    PATELLA F. R., CHOFFAT T. and REBOUD J.-L. et al. Mass loss simulation in cavitation erosion: Fatigue criterion approach[J]. Wear, 2013, 300(1–2): 205–215.CrossRefGoogle Scholar
  8. [8]
    PATELLA R. F., ARCHER A. and FLAGEUL C. Numerical and experimental investigations on cavitation erosion[C]. 26th IAHR Symposium on Hydraulic Machinery and Systems. Beijing, China, 2012.Google Scholar
  9. [9]
    PATELLA R. F., REBOUD J. L. and ARCHER A. Cavitation damage measurement by 3D laser profilometry[J]. Wear, 2000, 246(1–2): 59–67.CrossRefGoogle Scholar
  10. [10]
    FRANC J. P., MICHEL J. M. Fundamentals of cavitation[M]. New York, USA: Springer-Verlag, 2004, 328.zbMATHGoogle Scholar
  11. [11]
    DULAR M., STOFFEL B. and ŠIROK B. Development of a cavitation erosion model[J]. Wear, 2006, 261(5–6): 642–655.CrossRefGoogle Scholar
  12. [12]
    DULAR M., COUTIER-DELGOSHA O. Numerical modelling of cavitation erosion[J]. International Journal for Numerical Methods in Fluids, 2009, 61(12): 1388–1410.CrossRefGoogle Scholar
  13. [13]
    TERWISGA T. V., ZIRU L. and FITZSIMMONS P. et al. Cavitation erosion-A review of physical mechanisms and erosion risk models[C]. Proceedings of the 7th International Symposium on Cavitation. Ann Arbor, Michigan, USA, 2009.Google Scholar
  14. [14]
    LI Z. R. Assessment of cavitation erosion with a multiphase Reynolds-averaged Navier-Stokes method[D]. Doctoral Thesis, Delft, The Netherlands: Delft University of Technology, 2012.Google Scholar
  15. [15]
    LI Z., TERWISGA T. J. C. On the capability of a RANS method to assess the cavitation erosion risk on a hydrofoil[C]. 8th International Symposium on Cavitation (CAV). Singapore, 2012.CrossRefGoogle Scholar
  16. [16]
    LE Q., FRANC J. P. and MICHEL J. M. Partial cavities: Global behavior and mean pressure distribution[J]. Journal of Fluids Engineering, 1993, 115(2): 243–248.CrossRefGoogle Scholar
  17. [17]
    FRANK T., LIFANTE C. and JEBAUER S. et al. CFD simulation of cloud and tip vortex cavitation on hydrofoils[C]. 6th International Conference on Multiphase Flow (ICMF 2007). Leipzig, Germany, 2007.Google Scholar
  18. [18]
    FRANC J. P., RIONDET M. and KARIMI A. et al. Material and velocity effects on cavitation erosion pitting[J]. Wear, 2012, 274(3): 248–259.CrossRefGoogle Scholar
  19. [19]
    GAVAISES M., VILLA F. and KOUKOUVINIS P. et al. Visualisation and LES simulation of cavitation cloud formation and collapse in an axisymmetric geometry[J]. International Journal of Multiphase Flow, 2015, 68: 14–26.CrossRefGoogle Scholar
  20. [20]
    KOUKOUVINIS P., BERGELES G. and GAVAISES M. A new methodology for estimating cavitation erosion: Application on a high speed cavitation rig[C]. 6th European Conference on Computational Fluid Dynamics. Barcelona, Spain, 2014.Google Scholar

Copyright information

© China Ship Scientific Research Center 2015

Authors and Affiliations

  1. 1.Department of Engineering and Mathematical ScienceCity University LondonLondonUK

Personalised recommendations