Advertisement

Journal of Hydrodynamics

, Volume 25, Issue 1, pp 72–82 | Cite as

Optimization of thermoacoustic refrigerator using response surface methodology

  • N. M. Hariharan
  • P. SivashanmugamEmail author
  • S. Kasthurirengan
Article

Abstract

Thermoacoustic refrigerator (TAR) converts acoustic waves into heat without any moving parts. The study presented here aims to optimize the parameters like frequency, stack position, stack length, and plate spacing involving in designing TAR using the Response Surface Methodology (RSM). A mathematical model is developed using the RSM based on the results obtained from DeltaEC software. For desired temperature difference of 40 K, optimized parameters suggested by the RSM are the frequency 254 Hz, stack position 0.108 m, stack length 0.08 m, and plate spacing 0.0005 m. The experiments were conducted with optimized parameters and simulations were performed using the Design Environment for Low-amplitude ThermoAcoustic Energy Conversion (DeltaEC) which showed similar results.

Key words

Design Environment for Low-amplitude ThermoAcoustic Energy Conversion (DeltaEC) optimization Response Surface Methodology (Rsm) temperature difference thermoacoustic refrigerator (Tar) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    TIJANI M. E. H., ZEEGERS J. C. H. and De WAELE A. T. A. M. Design of thermoacoustic refrigerators[J]. Cryogenics, 2002, 42(1): 49–57.CrossRefGoogle Scholar
  2. [2]
    SAKAMOTO S., WATANABE Y. The experimental studies of thermoacoustic cooler[J]. Ultrasonics, 2004, 42(1–9): 53–56.Google Scholar
  3. [3]
    ZINK F., VIPPERMAN J. S., SCHAEFER L. A. Environmental motivation to switch to thermoacoustic refrigeration[J]. Applied Thermal Engineering, 2010, 30(2–3): 119–126.CrossRefGoogle Scholar
  4. [4]
    TU Q., CHEN Z. J. and LIU J. X. et al. Numerical simulation of loudspeaker-driven thermoacoustic refri-gerator[C]. Proceedings of the Twentieth International Cryogenic Engineering Conference (Icec 20). Beijing, China, 2005.Google Scholar
  5. [5]
    ZOONTJENS L., HOWARD C. Q. and ZANDER A. C. et al. Modeling and optimization of acoustic inertance segments for thermoacoustic devices[C]. ical Societies’Conference: Acoustics 2006: Noise of Progress, Clearwater Resort. ChristFirst Australasian Acoustchurch, New Zealand, 2006, 435–441.Google Scholar
  6. [6]
    PAEK I., BRAUN J. E. and MONGEAU L. Evaluation of standing-wave thermoacoustic cycles for cooling applications[J]. International Journal of Refrigeration, 2007, 30(6): 1059–1071.CrossRefGoogle Scholar
  7. [7]
    AKHAVANBAZAZ M., KAMRAN SIDDIQUI M. H. and BHAT R. B. The impact of gas blockage on the performance of a thermoacoustic refrigerator[J]. Experimental Thermal and Fluid Science, 2007, 32(1): 231–239.CrossRefGoogle Scholar
  8. [8]
    NSOFOR E. C., ALI A. Experimental study on performance of thermoacoustic refrigerating system[J]. Applied Thermal Engineering, 2009, 29(13): 2672–2679.CrossRefGoogle Scholar
  9. [9]
    WU F., CHEN L. and SHU A. et al. Constructal design of stack filled with parallel plates in standing-wave thermo-acoustic cooler[J]. Cryogenics, 2009, 49(3–4): 107–111.CrossRefGoogle Scholar
  10. [10]
    KE H.-B., LIU Y.-W. and HE Y.-L. et al. Numerical simulation and parameter optimization of thermo-acoustic refrigerator driven at large amplitude[J]. Cryogenics, 2010, 50(1): 28–35.CrossRefGoogle Scholar
  11. [11]
    PICCOLO A. Numerical computation for parallel plate thermoacoustic heat exchangers in standing wave oscillatory flow[J]. Internatinal Journal of Heat and Mass Transfer, 2011, 54(21–22): 4518–4530.zbMATHGoogle Scholar
  12. [12]
    BERSON A., POIGNAND G. and BLANC-BENON P. et al. Nonlinear temperature field near the stack ends of a standing-wave thermoacoustic refrigerator[J]. Inter-national Journal of Heat and Mass Transfer, 2011, 54(21–22): 4730–4735.CrossRefGoogle Scholar
  13. [13]
    THAKUR C., SRIVASTAVA V. C. and MALL I. D. Electrochemical treatment of a distillery wastewater: Parametric and residue disposal study[J]. Chemical Engineering Journal, 2009, 148(2–3): 496–505.CrossRefGoogle Scholar
  14. [14]
    SIVALINGAM A., HARIHARAN N. M. and KANNADASAN T. et al. Mass transfer studies in three-phase fluidized bed using response surface method[J]. Chemical and Biochemical Engineering Quarterly, 2011, 25(2): 171–179.Google Scholar
  15. [15]
    HARIHARAN N. M., SIVASHANMUGAM P. and KASTHURIRENGAN S. Optimization of thermoacoustic primemover using response surface methodology[J]. HVAC&R Research, 2012, 18(5): 890–903.Google Scholar
  16. [16]
    TIJANI M. E. H., ZEEGERS J. C. H. and De WAELE A. T. A. M. The optimal stack spacing for thermoacou-stic refrigeration[J]. Journal of the Acoustical Society America, 2002, 112(1): 128–133.CrossRefGoogle Scholar
  17. [17]
    COLEMAN H. W., STEELE W. G. Experimentation and uncertainty analysis for engineers[M]. Second Edition, New York: Wiley and Sons, 1989, 189–199.Google Scholar

Copyright information

© China Ship Scientific Research Center 2013

Authors and Affiliations

  • N. M. Hariharan
    • 1
  • P. Sivashanmugam
    • 1
    Email author
  • S. Kasthurirengan
    • 2
  1. 1.Department of Chemical EngineeringNational Institute of TechnologyTrichyIndia
  2. 2.Centre for Cryogenic TechnologyIndian Institute of ScienceBangaloreIndia

Personalised recommendations