Advertisement

Journal of Hydrodynamics

, Volume 20, Issue 4, pp 477–484 | Cite as

Genetic Programming to Predict Ski-Jump Bucket Spill-Way Scour

  • H. AzamathullaEmail author
  • A. Ghani
  • N. A. Zakaria
  • S. H. Lai
  • C. K. Chang
  • C. S. Leow
  • Z. Abuhasan
Article

Abstract

Researchers in the past had noticed that application of Artificial Neural Networks (ANN) in place of conventional statistics on the basis of data mining techniques predicts more accurate results in hydraulic predictions. Mostly these works pertained to applications of ANN. Recently, another tool of soft computing, namely, Genetic Programming (GP) has caught the attention of researchers in civil engineering computing. This article examines the usefulness of the GP based approach to predict the relative scour depth downstream of a common type of ski-jump bucket spillway. Actual field measurements were used to develop the GP model. The GP based estimations were found to be equally and more accurate than the ANN based ones, especially, when the underlying cause-effect relationship became more uncertain to model.

Key words

Genetic Programming (GP) neural networks spillway scour ski-jump bucket 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    MASON P. J., ARUMUGAM K. Free jet scour below dams and ski-jump buckets[J]. Journal of Hydraulic Engineering., ASCE, 1985, 111(2): 220–235.CrossRefGoogle Scholar
  2. [2]
    UNITED STATES BUREAU OF RECLAMATION. Design of small dams[M]. 1987.Google Scholar
  3. [3]
    WU C. M. Scour at downstream end of dams in Taiwan[C]. International Symposium on River Mechanics. Bangkok, Thailand, 1973, I(A13): 1–6.Google Scholar
  4. [4]
    MARTINS R. B. F. Scouring of rocky river beds by free jet spillways[J]. International Water Power and Dam Construction, 1975, 27(4): 152–153.Google Scholar
  5. [5]
    AZAMATHULLA H. Md. Neural networks to estimate scour downstream of ski-jump bucket spillway[D]. Ph. D. Thesis, Bombay: Indian Institute of Technology, 2005.Google Scholar
  6. [6]
    AZAMATHULLA H. Md., DEO M. C. and DEOLALIKAR P. B. Estimation of scour below spillways using neural networks[J]. Journal of Hydraulic Research, 2006, 44(1): 61–69.CrossRefGoogle Scholar
  7. [7]
    LEE T. L., JENG D. S. and ZHANG G. H. et al. Neural network modeling for estimation of scour depth around bridge piers[J]. Journal of Hydrodynamics, Ser. B, 2007, 19(3): 378–386.CrossRefGoogle Scholar
  8. [8]
    SINGH A. K., DEO M. C. and SANIL KUMAR V. Neural network - genetic programming for sediment transport[J]. Journal of Maritime Engineering, 2007, 160(MA3): 113–119.CrossRefGoogle Scholar
  9. [9]
    HOLLAND J. H. Adaptation in natural and artificial system[M]. Ann Arbor Mich.: University of Michigan Press, 1975.Google Scholar
  10. [10]
    JOHARI A., HABIBAGAHI G. and GHAHRAMANI A. Prediction of soil-water characteristic curve using genetic programming[J]. J. Geotechnical and Geo-environmental Engineering, ASCE, 2006, 132(5): 661–665.CrossRefGoogle Scholar
  11. [11]
    KOZA J. R. Genetic programming: On the programming of computers by means of natural selection[M]. A Bradford Book, MIT Press. 1992.zbMATHGoogle Scholar
  12. [12]
    SOH C. K., YANG Y. Genetic programming based approach for structural optimization[J]. Journal of Computing in Civil Engineering, ASCE, 2000, 14(1): 31–37.CrossRefGoogle Scholar
  13. [13]
    WHIGHAM P. A., CRAPPER P. F. Modeling rainfallrunoff using genetic programming[J]. Mathematical and Computer Modeling Canberra, 2001, 33: 707–721.CrossRefGoogle Scholar
  14. [14]
    HONG Y. S., RAO B. Evolutionary self-organising modeling of a municipal wastewater treatment plant[J]. Water Research, 2003, 37: 1199–1212.CrossRefGoogle Scholar
  15. [15]
    ASHOUR A. F., ALVAREZ L. F. and TOROPOV V. V. Empirical modeling of RC deep beams by genetic programming[J]. Computers and Structures, 2003, 81: 331–338.CrossRefGoogle Scholar
  16. [16]
    CHEN Li. Study of applying macro-evolutionary genetic programming to concrete strength estimation[J]. Journal of Computing in Civil Engineering, ASCE, 2003, 17(4): 290–294.CrossRefGoogle Scholar
  17. [17]
    YANG C. X., THAM L. G. and FENG X. T. et al. Two-stepped evolutionary algorithm and its application to stability analysis of slopes[J]. Journal of Computing in Civil Engineering, ASCE, 2004,18(2): 145–153.CrossRefGoogle Scholar
  18. [18]
    BABOVIC V. Computer-aided knowledge discovery in hydraulic engineering[C]. Proceedings 15th Congress of the Asia-Pacific division of International Association of Hydraulic Research. Madras: Indian Institute of Technology, 2006,. IV: 65–72.Google Scholar
  19. [19]
    SILVA S. GPLAB, a genetic programming toolbox for Matlab, ITQB/UNL[M]. http://gplab.sourceforge.net. 2007.Google Scholar
  20. [20]
    AZAMATHULLA H. MD., DEO M. C. and DEOLALIKAR P. B. Neural networks for estimation of scour downstream of ski-jump bucket[J]. Journal of Hydraulic Engineering, ASCE, 2005, 131(10): 898–908.CrossRefGoogle Scholar
  21. [21]
    HOFFMANS G. J. C. M., VERHEIJ H. J. Scour manual[M]. A. A. Balkema, Rotterdam/Brookfield. 1997.Google Scholar
  22. [22]
    VERONESE A. Erosioni de Fondo a Valle di uno Scarico[J]. Annali dei LavoriPublicci, 1937, 75(9): 717–726.Google Scholar
  23. [23]
    DAMLE P. M., VENKATRAMAN C. P. and DESAI S. C. Evaluation of scour below ski-jump buckets of spillways[J]. Proc. CWPRS Golde. Jubilee Symp. Poona, India, 1966, I: 154–163.Google Scholar
  24. [24]
    SEN P. Spillway scour and design of plunge pool[J]. J. Irrigation Power, 1984, 41(1): 51–66.Google Scholar
  25. [25]
    SPURR K. J. W. Energy approach to estimating scour downstream of a large dam[J]. Int. Water Power Dam Construction, 1985, 37(7): 81–89.Google Scholar
  26. [26]
    WANG S. Scouring of river beds below sluices and dams[C]. Design of Hydraulic structures - Proc. International Symp. on Design of Hydraulic Structures, Fort Collins, Colo.: Colorado State University, 1987, 295–304.Google Scholar
  27. [27]
    AKHMEDOV T. Kh. Calculation of the depth of scour in the rock downstream of a spillway[J]. Int. Water Power Dam Construction, 1988, 40(12): 25–27.Google Scholar
  28. [28]
    KHATSURIA R. M. State of art on computation, prediction and analysis of scour in rocky beds downstream of ski-jump spillways[C]. CWPRS, Platinum Jubilee Symp. Poona, India. 1992.Google Scholar
  29. [29]
    YILDIZ D., ÜZÜCEK E. Experience gained in turkey on scours occurred downstream of the spillways of high dams and protective measurements[C]. Proc. 18th IICOLD. Durban, 1994, Q.No. 71, R 9, 113–135.Google Scholar
  30. [30]
    YILDIZ D., ÜZÜCEK E. Prediction of scour depth from free falling ski-jump bucket jets[J]. Int. Water Power Dam Construction, 1994, 46(11): 50–56.Google Scholar

Copyright information

© China Ship Scientific Research Center 2008

Authors and Affiliations

  • H. Azamathulla
    • 1
    Email author
  • A. Ghani
    • 1
  • N. A. Zakaria
    • 1
  • S. H. Lai
    • 1
  • C. K. Chang
    • 1
  • C. S. Leow
    • 1
  • Z. Abuhasan
    • 1
  1. 1.River Engineering and Urban Drainage Research CentreUniversity Sains MalaysiaNibong Tebal, Pulau PinangMalaysia

Personalised recommendations