Bulletin of Mathematical Biology

, Volume 65, Issue 6, pp 1025–1051 | Cite as

Identification of all steady states in large networks by logical analysis

Article

Abstract

The goal of generalized logical analysis is to model complex biological systems, especially so-called regulatory systems, such as genetic networks. This theory is mainly characterized by its capacity to find all the steady states of a given system and the functional positive and negative circuits, which generate multistationarity and a cycle in the state sequence graph, respectively. So far, this has been achieved by exhaustive enumeration, which severely limits the size of the systems that can be analysed. In this paper, we introduce a mathematical function, called image function, which allows the calculation of the value of the logical parameter associated with a logical variable depending on the state of the system. Thus the state table of the system is represented analytically. We then show how all steady states can be derived as solutions to a system of steady-state equations. Constraint programming, a recent method for solving constraint satisfaction problems, is applied for that purpose. To illustrate the potential of our approach, we present results from computer experiments carried out on very large randomly-generated systems (graphs) with hundreds, or even thousands, of interacting components, and show that these systems can be solved using moderate computing time. Moreover, we illustrate the approach through two published applications, one of which concerns the computation times of all steady states for a large genetic network.

Keywords

Logical Analysis Image Function Constraint Programming Constraint Satisfaction Problem Threshold Function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bacchus, F. and P. van Beek (1998). On the conversion between non-binary and binary constraint satisfaction problems, in Proceedings of the Fifteenth National Conference on Artificial Intelligence and Tenth Innovative Applications of Artificial Intelligence Conference, AAAI 98, IAAI 98, Madison, Wisconsin: AAAI Press/The MIT Press, pp. 310–318.Google Scholar
  2. Barták, R. (2001). Theory and practice of constraint propagation, in Proceedings of 3rd Workshop on Constraint Programming for Decision and Control (CPDC2001), Gliwice, Poland: Wydavnictvo Pracovni Komputerowej, pp. 7–14.Google Scholar
  3. Bhalla, U. S. and R. Iyengar (1999). Emergent properties of networks of biological signalling pathways. Science 283, 381–387.CrossRefGoogle Scholar
  4. Cornish-Bowden, A. (1995). Fundamentals of Enzyme Kinetics, revised edition, London: Portland Press.Google Scholar
  5. Covert, M. W., C. H. Schilling and B. Palsson (2001). Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213, 73–88.CrossRefGoogle Scholar
  6. de Jong, H. (2002). Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9, 69–105.Google Scholar
  7. de Jong, H., J.-L. Gouzé, C. Hernandez, M. Page, T. Sari and J. Geiselmann (2002). Qualitative simulation of genetic regulatory networks using piecewise-linear models. Report of Research 4407, INRIA.Google Scholar
  8. Demongeot, J. (1998). Multistationarity and cell differentiation. J. Biol. Syst. 6, 1–2.CrossRefGoogle Scholar
  9. Devloo, V. (2003). Développement d’outils théoriques et logicielspour la modélisation du réseau des processus cellulaires, PhD thesis, Université Libre de Bruxelles.Google Scholar
  10. Glass, L. (1975). Classification of biological networks by their qualitative dynamics. J. Theor. Biol. 54, 85–107.Google Scholar
  11. Glass, L. and S. A. Kauffman (1972). Co-operative components, spatial localization and oscillatory cellular dynamics. J. Theor. Biol. 34, 219–237.CrossRefGoogle Scholar
  12. Glass, L. and S. A. Kauffman (1973). The logical analysis of continuous non-linear biochemical control networks. J. Theor. Biol. 39, 103–129.CrossRefGoogle Scholar
  13. Gouzé, J.-L. (1998). Positive and negative circuits in dynamical systems. J. Biol. Syst. 6, 11–15.MATHCrossRefGoogle Scholar
  14. Haralick, R. and G. Elliott (1980). Increasing tree search efficiency for constraint satisfaction problems. Artif. Intell. 14, 263–313.CrossRefGoogle Scholar
  15. Heinrich, R. and S. Schuster (1996). The Regulation of Cellular Systems, New York: Chapman and Hall.Google Scholar
  16. Hofmeyr, J. H. S. and H. V. Westerhoff (2001). Building the cellular puzzle. Control in multi-level reaction networks. J. Theor. Biol. 208, 261–285.CrossRefGoogle Scholar
  17. Kauffman, S. A. (1993). The Origins of Order: Self-Organization and Selection in Evolution, New York: Oxford University Press.Google Scholar
  18. Kuipers, B. (1994). Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge, Cambridge, MA: MIT Press.Google Scholar
  19. Kumar, V. (1992). Algorithms for constraint satisfaction problems: A survey. AI Magazine 13, 32–44.Google Scholar
  20. Levin, J. Z. and E. M. Meyerowitz (1995). UFO: an Arabidopsis gene involved in both floral meristem and floral organ development. Plant Cell 7, 529–548.CrossRefGoogle Scholar
  21. Lewis, J. E. and L. Glass (1991). Steady states, limit cycles, and chaos in models of complex biological networks. Int. J. Bifurcation Chaos 1, 477–483.MathSciNetCrossRefGoogle Scholar
  22. Liu, Z. and E. M. Meyerowitz (1995). LEUNIG regulates AGAMOUS expression in Arabidopsis flowers. Development 121, 975–991.Google Scholar
  23. Mackworth, A. K. (1977). Consistency in networks of relations. Artif. Intell. 8, 99–118.MATHCrossRefGoogle Scholar
  24. Marriott, K. and P. Stuckey (1998). Programming with Constraints: An Introduction, Cambridge, MA: MIT Press.Google Scholar
  25. McAdams, H. M. and A. Arkin (1997). Stochastic mechanisms in gene expression. Proc. Natl Acad. Sci. USA 94, 814–819.CrossRefGoogle Scholar
  26. Mendoza, L., D. Thieffry and E. R. Alvarez-Buylla (1999). Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis. Bioinformatics 15, 593–606.CrossRefGoogle Scholar
  27. Nilsson, N. J. (1980). Principles of Artificial Intelligence, Palo Alto: Tioga.Google Scholar
  28. Plahte, E., T. Mestl and S. W. Omholt (1994). Global analysis of steady points for systems of differential equations with sigmoid interactions. Dyn. Stab. Syst. 9, 275–291.MathSciNetGoogle Scholar
  29. Plahte, E., T. Mestl and S. W. Omholt (1995). Feedback loops, stability and multistationarity in dynamical systems. J. Biol. Syst. 3, 569–577.CrossRefGoogle Scholar
  30. Plahte, E., T. Mestl and S. W. Omholt (1998). A methodological basis for description and analysis of systems with complex switch-like interactions. J. Math. Biol. 36, 321–348.MathSciNetCrossRefGoogle Scholar
  31. Sakai, H., L. J. Medrano and E. M. Meyerowitz (1995). Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature 378, 199–203.CrossRefGoogle Scholar
  32. Sánchez, L. and D. Thieffry (2001). A logical analysis of the Drosophila gap genes. J. Theor. Biol. 189, 377–389.CrossRefGoogle Scholar
  33. Sánchez, L., J. van Helden and D. Thieffry (1997). Establishment of the dorso-ventral pattern during embryonic development of Drosophila melanogaster: a logical analysis. J. Theor. Biol. 189, 377–389.CrossRefGoogle Scholar
  34. Shen-Orr, S. S., R. Milo, S. Mangan and U. Alon (2002). Networks motifs in the transcriptional regulation network of Escherichia coli. Nat. Genetics 31, 64–68.CrossRefGoogle Scholar
  35. Smith, B. M., S. C. Brailsford, P. M. Hubbard and H. P. Williams (1996). The progressive party problem: integer linear programming and constraint programming compared. Constraints 1, 119–138.MathSciNetCrossRefGoogle Scholar
  36. Smolen, P., D. A. Baxter and J. H. Byrne (2000). Modeling transcriptional control in gene networks: methods, recent results, and future directions. Bull. Math. Biol. 62, 247–292.CrossRefGoogle Scholar
  37. Snoussi, E. H. (1989). Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach. Dyn. Stab. Syst. 4, 189–207.MATHMathSciNetGoogle Scholar
  38. Snoussi, E. H. (1998). Necessary conditions for multistationarity and stable periodicity. J. Biol. Syst. 6, 3–9.MATHCrossRefGoogle Scholar
  39. Snoussi, E. H. and R. Thomas (1993). Logical identification of all steady states: the concept of feedback loop characteristic states. Bull. Math. Biol. 55, 973–991.CrossRefGoogle Scholar
  40. Somogyi, R. and C. A. Sniegoski (1996). Modeling the complexity of genetic networks: understanding multigenic and pleiotropic regulation. Complexity 1, 45–63.MathSciNetGoogle Scholar
  41. Sugita, M. (1963). Functional analysis of chemical systems in vivo using a logical circuit equivalent: II. The idea of a molecular automaton. J. Theor. Biol. 4, 179–192.CrossRefGoogle Scholar
  42. Thieffry, D., M. Colet and R. Thomas (1993). Formalization of regulatory nets: a logical method and its automatization. Math. Modelling Sci. Comput. 2, 144–151.Google Scholar
  43. Thieffry, D. and R. Thomas (1995). Dynamical behaviour of biological networks: II. Immunity control in bacteriophage lambda. Bull. Math. Biol. 57, 277–297.CrossRefGoogle Scholar
  44. Thomas, R. (ed.) (1979). Kinetic Logic: A Boolean Approach to the Analysis of Complex Regulatory Systems, Lecture Notes in Biomathematics 29, Berlin: Springer.Google Scholar
  45. Thomas, R. (1991). Regulatory networks seen as asynchronous automata: a logical description. J. Theor. Biol. 153, 1–23.Google Scholar
  46. Thomas, R. (1994). The role of feedback circuits: positive feedback circuits are a necessary condition for positive real eigenvalues of the Jacobian matrix. Ber. Bunsenges. Phys. Chem. 98, 1148–1151.Google Scholar
  47. Thomas, R. and R. D’Ari (1990). Biological Feedback, Boca Raton, FL: CRC Press.Google Scholar
  48. Thomas, R., A.-M. Gathoye and L. Lambert (1976). A complex control circuit: regulation of immunity in temperate bacteriophages. Eur. J. Biochem. 71, 211–227.CrossRefGoogle Scholar
  49. Thomas, R. and M. Kaufman (2001). Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos 11, 180–195.MathSciNetCrossRefGoogle Scholar
  50. Thomas, R. and P. van Ham (1974). Analyse formelle de circuits de régulation génétique: le contrôle de l’immunitéchez les bactériophages lambdoides. Biochimie 56, 1529–1547.Google Scholar
  51. Tsang, E. (1993). Foundations of Constraint Satisfaction, London and San Diego: Academic Press.Google Scholar
  52. Tyson, J. J. and H. G. Othmer (1978). The dynamics of feedback control circuits in biochemical pathways. Prog. Theor. Biol. 5, 1–62.Google Scholar
  53. van Ham, P. (1979). How to deal with more than two levels, in Kinetic Logic: A Boolean Approach to the Analysis of Complex Regulatory Systems, Lecture Notes in Bioinformatics 29, R. Thomas (Ed.), Berlin: Springer, pp. 326–343.Google Scholar
  54. van Hentenryck, P. (1989). Constraint Satisfaction in Logic Programming, Cambridge, MA: MIT Press.Google Scholar
  55. van Hentenryck, P. (1999). The OPL Optimization Programming Language, Cambridge, MA: MIT Press.Google Scholar
  56. Voit, E. O. (2000). Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists, Cambridge: Cambridge University Press.Google Scholar
  57. Yang, C. H., L. J. Chen and Z. R. Sung (1995). Genetic regulation of shoot development in Arabidopsis: role of the EMF genes. Dev. Biol. 169, 421–435.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2003

Authors and Affiliations

  1. 1.SCMBB, CP 263, Université Libre de BruxellesBrusselsBelgium
  2. 2.GERAD and HECMontréalCanada
  3. 3.Optimization, ISRO, Université Libre de BruxellesBrusselsBelgium

Personalised recommendations