Bulletin of Mathematical Biology

, Volume 65, Issue 5, pp 903–931

Regression and regrowth of tumour cords following single-dose anticancer treatment

  • Alessandro Bertuzzi
  • Alberto D’Onofrio
  • Antonio Fasano
  • Alberto Gandolfi
Article

Abstract

In this paper, the evolution of a tumour cord after treatment is investigated by extensive numerical simulations on the basis of a mathematical model developed by Bertuzzi et al. (submitted). The model is formulated in cylindrical symmetry adopting the continuum approach, and takes into account the influence of oxygen level on the proliferation and death rate of cells, the volume reduction due to disgregation of dead cells, and the cell killing effects of radiation and drugs. Some extensions of the model are proposed to represent more accurately the radioresistance of hypoxic cells and the cytotoxic action of anticancer drugs. The steady state of the cord, and the cord evolution from the steady state after the delivery of a single dose of an anticancer agent, are computed for various combinations of model parameters and for different choices of the functions describing the effects of treatments. The results of the numerical computations show that, in spite of its many simplifications, the model behaviour appears to be reasonable in view of the available experimental observations. The model allows having a better insight into some complex treatment-related events, such as cell reoxygenation and repopulation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, J. A. and S. A. Maggelakis (1990). Diffusion regulated growth characteristics of a spherical prevascular carcinoma. Bull. Math. Biol. 52, 549–582.CrossRefGoogle Scholar
  2. Ambrosi, D. and L. Preziosi (2002). On the closure of mass balance models for tumour growth. Math. Models Methods Appl. Sci. 12, 737–754.MathSciNetCrossRefGoogle Scholar
  3. Bertuzzi, A., A. Fasano and A. Gandolfi (2000). A mathematical model for the growth of tumor cords incorporating the dynamics of a nutrient, in Free Boundary Problems: Theory and Applications II, N. Kenmochi (Ed.), Tokyo: Gakkotosho, pp. 31–46.Google Scholar
  4. Bertuzzi A., A. Fasano and A. Gandolfi. A free boundary problem with unilateral constraints describing the evolution of a tumour cord under the influence of cell killing agents, submitted.Google Scholar
  5. Bertuzzi, A., A. Fasano, A. Gandolfi and D. Marangi (2002). Cell kinetics in tumour cords studied by a model with variable cell cycle length. Math. Biosci. 177 & 178, 103–125.MathSciNetCrossRefGoogle Scholar
  6. Bertuzzi, A. and A. Gandolfi (2000). Cell kinetics in a tumour cord. J. Theor. Biol. 204, 587–599.CrossRefGoogle Scholar
  7. Bloor, M. I. G. and M. J. Wilson (1997). A mathematical model of a micrometastasis. J. Theor. Med. 1, 153–168.Google Scholar
  8. Bloor, M. I. G. and M. J. Wilson (1999). The non-uniform spatial development of a micrometastasis. J. Theor. Med. 2, 55–71.Google Scholar
  9. Boyer, M. J. and I. F. Tannock (1998). Cellular and molecular basis of chemotherapy, in The Basic Science of Oncology, I. F. Tannock and R. P. Hill (Eds), New York: McGraw-Hill, pp. 350–369.Google Scholar
  10. Breward, C. J. W., H. M. Byrne and C. E. Lewis (2001). Modelling the interactions between tumour cells and a blood vessel in a microenvironment within a vascular tumour. Eur. J. Appl. Math. 12, 529–556.MathSciNetCrossRefGoogle Scholar
  11. Breward, C. J. W., H. M. Byrne and C. E. Lewis (2002). The role of cell-cell interactions in a two-phase model for avascular tumour growth. J. Math. Biol. 45, 125–152.MathSciNetCrossRefGoogle Scholar
  12. Bristow, R. G. and R. P. Hill (1998). Molecular and cellular basis of radiotherapy, in The Basic Science of Oncology, I. F. Tannock and R. P. Hill (Eds), New York: McGraw-Hill, pp. 295–321.Google Scholar
  13. Brown, J. M. and B. G. Siim (1996). Hypoxia-specific cytotoxins in cancer therapy. Semin. Radiat. Oncol. 6, 22–36.CrossRefGoogle Scholar
  14. Byrne, H. M. and M. A. J. Chaplain (1995). Growth of nonnecrotic tumors in the presence and absence of inhibitors. Math. Biosci. 130, 151–181.CrossRefGoogle Scholar
  15. Byrne, H. M. and M. A. J. Chaplain (1996). Growth of necrotic tumors in the presence and absence of inhibitors. Math. Biosci. 135, 187–216.CrossRefGoogle Scholar
  16. Casciari, J. J., S. V. Sotirchos and R. M. Sutherland (1992). Variations in tumor cell growth rates and metabolism with oxygen concentration, glucose concentration, and extracellular pH. J. Cell. Physiol. 151, 386–394.CrossRefGoogle Scholar
  17. Chapman, J. D., D. L. Dugle, A. P. Reuvers, B. E. Meeker and J. Borsa (1974). Studies on the radiosensitizing effect of oxygen in Chinese hamster cells. Int. J. Radiat. Biol. 26, 383–389.Google Scholar
  18. Cui, S. and A. Friedman (2001). Analysis of a mathematical model of the growth of necrotic tumors. J. Math. Anal. Appl. 255, 636–677.MathSciNetCrossRefGoogle Scholar
  19. Darzynkiewicz, Z., G. Juan, X. Li, W. Gorczyca, T. Murakami and F. Traganos (1997). Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry 27, 1–20.CrossRefGoogle Scholar
  20. Dyson, J., R. Villella-Bressan and G. Webb. The steady state of a maturity structured tumor cord cell population. Discrete Contin. Dynam. Systems B, to appear.Google Scholar
  21. Falkvoll, K. H. (1990). The relationship between changes in tumour volume, tumour cell density and parenchimal cord radius in a human melanoma xenograft exposed to single dose irradiation. Acta Oncol. 29, 935–939.Google Scholar
  22. Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 27–31.CrossRefGoogle Scholar
  23. Forrester, H. B., C. A. Vidair, N. Albright, C. C. Ling and W. C. Dewey (1999). Using computerized video time lapse for quantifying cell death of X-irradiated rat embryo cells transfected with c-myc or c-Ha-ras. Cancer Res. 59, 931–939.Google Scholar
  24. Greenspan, H. P. (1972). Models for the growth of a solid tumor by diffusion. Stud. Appl. Math. 51, 317–340.MATHGoogle Scholar
  25. Hirst, D. G. and J. Denekamp (1979). Tumour cell proliferation in relation to the vasculature. Cell Tissue Kinet. 12, 31–42.Google Scholar
  26. Hirst, D. G., J. Denekamp and B. Hobson (1982). Proliferation kinetics of endothelial and tumour cells in three mouse mammary carcinomas. Cell Tissue Kinet. 15, 251–261.Google Scholar
  27. Hirst, D. G., V. K. Hirst, B. Joiner, V. Praise and K. M. Shaffi (1991). Changes in tumour morphology with alterations in oxygen availability: further evidence for oxygen as a limiting substrate. Br. J. Cancer 64, 54–58.Google Scholar
  28. Holash, J., P. C. Maisonpierre, D. Compton, P. Boland, C. R. Alexander, D. Zagzag, G. D. Yankopoulos and S. J. Wiegand (1999). Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284, 1994–1998.CrossRefGoogle Scholar
  29. Holmgren, L., M. S. O’Reilly and J. Folkman (1995). Dormancy of micrometastases: balanced proliferation and apoptosis in presence of angiogenesis suppression. Nat. Med. 1, 149–153.CrossRefGoogle Scholar
  30. Jackson, T. L. (2002). Vascular tumor growth and treatment: consequences of polyclonality, competition and dynamic vascular support. J. Math. Biol. 44, 201–226.MATHMathSciNetCrossRefGoogle Scholar
  31. Jackson, T. L. and H. M. Byrne (2000). A mathematical model to study the effects of drug resistance and vasculature on the response of solid tumors to chemotherapy. Math. Biosci. 164, 17–38.MathSciNetCrossRefGoogle Scholar
  32. Jain, R. K. (1999). Transport of molecules, particles and cells in solid tumors. Annu. Rev. Biomed. Eng. 1, 241–263.CrossRefGoogle Scholar
  33. Joulia, J. M., F. Pinguet, M. Ychou, J. Duffour, D. Topart, P. Y. Grosse, C. Astre and F. Bressolle (1997). Pharmacokinetics of 5-fluorouracil (5-FUra) in patients with metastatic colorectal cancer receiving 5-FUra bolus plus continuous infusion with high dose folinic acid (LV5FU2). Anticancer Res. 17, 2727–2730.Google Scholar
  34. Kyle, A. H. and A. I. Minchinton (1999). Measurement of delivery and metabolism of tirapazamine to tumour tissue using the multilayered cell culture model. Cancer Chemother. Pharmacol. 43, 213–220.CrossRefGoogle Scholar
  35. Lubkin, S. R. and T. Jackson (2002). Multiphase mechanics of capsule formation in tumors. J. Biomech. Eng. 124, 237–243.CrossRefGoogle Scholar
  36. Majno, G. and I. Joris (1995). Apoptosis, oncosis and necrosis. An overview of cell death. Am. J. Pathol. 146, 3–15.Google Scholar
  37. McElwain, D. L. S. and P. J. Ponzo (1977). A model for the growth of a solid tumor with non-uniform oxygen consumption. Math. Biosci. 35, 267–279.CrossRefGoogle Scholar
  38. Montalenti, F., G. Sena, P. Cappella and P. Ubezio (1998). Simulating cancer cell kinetics after drug treatment: application to Cisplatin on ovarian carcinoma. Phys. Rev. E 57, 5877–5887.CrossRefGoogle Scholar
  39. Moore, J. V., P. S. Hasleton and C. H. Buckley (1985). Tumour cords in 52 human bronchial and cervical squamous cell carcinomas: inferences for their cellular kinetics and radiobiology. Br. J. Cancer 51, 407–413.Google Scholar
  40. Moore, J. V., H. A. Hopkins and W. B. Looney (1980). Dynamic histology of a rat hepatoma and the response to 5-fluorouracil. Cell Tissue Kinet. 13, 53–63.Google Scholar
  41. Moore, J. V., H. A. Hopkins and W. B. Looney (1983). Response of cell populations in tumor cords to a single dose of cyclophosphamide or radiation. Eur. J. Cancer Clin. Oncol. 19, 73–79.CrossRefGoogle Scholar
  42. Moore, J. V., H. A. Hopkins and W. B. Looney (1984). Tumour-cord parameters in two rat hepatomas that differ in their radiobiological oxygenation status. Radiat. Environ. Biophys. 23, 213–222.CrossRefGoogle Scholar
  43. Sena, G., C. Onado, P. Cappella, F. Montalenti and P. Ubezio (1999). Measuring the complexity of cell cycle arrest and killing of drugs: kinetics of phase-specific effects induced by taxol. Cytometry 37, 113–124.CrossRefGoogle Scholar
  44. Smith, G. D. (1965). Numerical Solution of Partial Differential Equations, London: Oxford University Press.Google Scholar
  45. Tannock, I. F. (1968). The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br. J. Cancer 22, 258–273.Google Scholar
  46. Tannock, I. F. (2001). Tumor physiology and drug resistance. Cancer Metastasis Rev. 20, 123–132.CrossRefGoogle Scholar
  47. Tannock, I. and A. Howes (1973). The response of viable tumor cords to a single dose of radiation. Radiat. Res. 55, 477–486.Google Scholar
  48. Ward, J. P. and J. R. King (1997). Mathematical modelling of avascular-tumour growth. IMA J. Math. Appl. Med. Biol. 14, 39–69.Google Scholar
  49. Ward, J. P. and J. R. King (1999). Mathematical modelling of avascular-tumour growth II: modelling growth saturation. IMA J. Math. Appl. Med. Biol. 16, 171–211.Google Scholar
  50. Ward, J. P. and J. R. King (2003). Mathematical modelling of drug transport in tumour multicell spheroids and monolayer cultures. Math. Biosci. 181, 177–207.MathSciNetCrossRefGoogle Scholar
  51. Webb, G. F. (2002). The steady state of a tumor cord cell population. J. Evolut. Equat. 2, 425–438.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2003

Authors and Affiliations

  • Alessandro Bertuzzi
    • 1
  • Alberto D’Onofrio
    • 2
  • Antonio Fasano
    • 3
  • Alberto Gandolfi
    • 1
  1. 1.Istituto di Analisi dei Sistemi ed Informatica del CNR “A. Ruberti”RomaItaly
  2. 2.Division of Epidemiology and BiostatisticsEuropean Institute of OncologyMilanoItaly
  3. 3.Dipartimento di Matematica “U. Dini”Università di FirenzeFirenzeItaly

Personalised recommendations