Advertisement

Bulletin of Mathematical Biology

, Volume 65, Issue 4, pp 693–730 | Cite as

Chemotactic signaling, microglia, and Alzheimer’s disease senile plaques: Is there a connection?

  • Magdalena LucaEmail author
  • Alexandra Chavez-Ross
  • Leah Edelstein-Keshet
  • Alex Mogilner
Article

Abstract

Chemotactic cells known as microglia are involved in the inflammation associated with pathology in Alzheimer’s disease (AD). We investigate conditions that lead to aggregation of microglia and formation of local accumulations of chemicals observed in AD senile plaques. We develop a model for chemotaxis in response to a combination of chemoattractant and chemorepellent signaling chemicals. Linear stability analysis and numerical simulations of the model predict that periodic patterns in cell and chemical distributions can evolve under local attraction, long-ranged repulsion, and other constraints on concentrations and diffusion coefficients of the chemotactic signals. Using biological parameters from the literature, we compare and discuss the applicability of this model to actual processes in AD.

Keywords

Hopf Bifurcation Pattern Formation Senile Plaque Linear Stability Analysis Negative Real Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, W. (1980). Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9, 147–177.zbMATHMathSciNetCrossRefGoogle Scholar
  2. Bagnard, D., N. Thomasset, M. Lohrum, A. W. Püschel and J. Bolz (2000). Spatial distributions of guidance molecules regulate chemorepulsion and chemoattraction of growth cones. J. Neurosci. 20, 1030–1035.Google Scholar
  3. Banati, R. B. and K. Beyreuther (1995). Alzheimer’s disease, in Neuroglia, Chapter 68, H. Kettenmann and B. R. Ransom (Eds), New York: Oxford University Press, pp. 1027–1043.Google Scholar
  4. Benjamin, D., S. Wormsley and S. Dower (1990). Heterogeneity in interleukin (IL)-1 receptors expressed on human B Cell lines. Differences in the molecular properties of IL-1 alpha and IL-1 beta binding sites. J. Biol. Chem. 265, 9943–9951.Google Scholar
  5. Benveniste, E. N. (1995). Cytokine production, in Neuroglia, Chapter 5, H. Kettenmann and B. R. Ransom (Eds), New York: Oxford University Press, pp. 700–713.Google Scholar
  6. Chicoine, M. R., C. L. Madsen and D. L. Silbergeld (1995). Modification of human glioma locomotion in vitro by cytokines EGF, bFGF, PDGFbb, NGF and TNF-α. Neurosurgery 36, 1165–1171.Google Scholar
  7. Cowley, G. (2000). Alzheimer’s: unlocking the mystery. Newsweek January, 46–51.Google Scholar
  8. Cross, M. and P. Hohenberg (1993). Pattern formation outside of equilibrium. Rev. Modern Phys. 65, 851–1112.CrossRefGoogle Scholar
  9. Davis, J. B., H. F. McMurray and D. Schubert (1992). The amyloid beta-protein of Alzheimer’s disease is chemotactic for mononuclear phagocytes. Biochem. Biophys. Res. Commun. 189, 1096–1100.CrossRefGoogle Scholar
  10. Davis, J. N. and J. C. Chisholm (1997). The ‘amyloid cascade hypothesis’ of AD: decoy or real McCoy? Trends Neurosci. 20, 558–559.CrossRefGoogle Scholar
  11. de Castro, F., L. Hu, H. Drabkin, C. Sotelo and A. Chédotal (1999). Chemoattraction and chemorepulsion of olfactory bulb axon by different secreted semaphorins. J. Neurosci. 19, 4428–4436.Google Scholar
  12. Dickson, D. W. (1997). The pathogenesis of senile plaques. J. Neuropathol. Exp. Neurol. 56, 321–339.Google Scholar
  13. Ding, A., E. Sanchez, S. Srimal and C. Nathan (1989). Macrophages rapidly internalize their tumor necrosis factor receptors in response to bacterial lipopolysaccharide. J. Biol. Chem. 264, 3924–3929.Google Scholar
  14. Edelstein-Keshet, L. and A. Spiros (2002). Exploring the formation of Alzheimer’s disease senile plaques in silico. J. Theor. Biol. 216, 301–326.CrossRefGoogle Scholar
  15. Farrell, B., R. Daniele and D. Lauffenburger (1990). Quantitative relationships between single-cell and cell-population model parameters for chemosensory migration responses of alveolar macrophages to C5a. Cell Motil. Cytoskeleton 16, 279–293.CrossRefGoogle Scholar
  16. Fiala, M. et al. (1998). Amyloid-β induces chemokine secretion and monocyte migration across a human blood-brain barrier model. Mol. Med. 4, 480–489.Google Scholar
  17. Goodhill, G. J. (1997). Diffusion in axon guidance. Eur. J. Neurosci. 9, 1414–1421.CrossRefGoogle Scholar
  18. Grindrod, P., J. Murray and S. Sinha (1989). Steady-state spatial patterns in a cell-chemotaxis model. IMA J. Math. Appl. Med. Biol. 6, 69–79.MathSciNetzbMATHGoogle Scholar
  19. Grunbaum, D. (1994). Translating stochastic density-dependent individual behavior to a continuum model of animal swarming. J. Math. Biol. 33, 139–161.CrossRefGoogle Scholar
  20. Grunbaum, D. (1999). Advection-diffusion equations for generalized tactic searching behaviors. J. Math. Biol. 38, 169–194.MathSciNetCrossRefGoogle Scholar
  21. Hammacher, A., R. Simpson and E. Nice (1996). The interleukin-6 (IL-6) partial antagonist (Q159E, T162P)IL-6 interacts with the IL-6 receptor and gp130 but fails to induce a stable hexameric receptor complex. J. Biol. Chem. 271, 5464–5473.CrossRefGoogle Scholar
  22. Hardy, J. (1997). Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci. 20, 154–159.CrossRefGoogle Scholar
  23. Hillen, T. and A. Stevens (2000). Hyperbolic models for chemotaxis in 1D. Nonlinear Anal. Real World Appl. 1, 409–433.MathSciNetCrossRefzbMATHGoogle Scholar
  24. Huang, W., Y. Ren and R. Russell (1994a). Moving mesh methods based upon moving mesh partial differential equations. J. Comput. Phys. 113, 279–290.MathSciNetCrossRefzbMATHGoogle Scholar
  25. Huang, W., Y. Ren and R. Russell (1994b). Moving mesh partial differential equations (mmpdes) based on the equidistribution principle. SIAM J. Numer. Anal. 31, 709–730.MathSciNetCrossRefzbMATHGoogle Scholar
  26. Igoshin, O., A. Mogilner, R. Welsch, D. Kaiser and G. Oster (2001). Pattern formation and traveling waves in myxobacteria: theory and modeling. Proc. Natl Acad. Sci. USA 98, 14913–14918.Google Scholar
  27. Itagaki, S., P. L. McGeer, H. Akiyama, S. Zhu and D. Selkoe (1989). Relationship of microglia and astrocytes to amyloid deposits of Alzheimer’s disease. J. Neuroimmunol. 24, 173–182.CrossRefGoogle Scholar
  28. Jones, N. (2000). Soothing the inflamed brain. Sci. Am. June, 11–12.Google Scholar
  29. Keller, E. F. and L. A. Segel (1970). Initiation of slime-mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415.CrossRefGoogle Scholar
  30. Kowall, N. W. (1994). Beta amyloid neurotoxicity and neuronal degeneration in Alzheimer’s disease. Neurobiol. Aging 15, 257–258.CrossRefGoogle Scholar
  31. Lauffenburger, D. A. and C. Kennedy (1983). Localized bacterial infection in a distributed model for tissue inflammation. J. Math. Biol. 16, 141–163.CrossRefzbMATHGoogle Scholar
  32. Lee, C., M. Hoopes, J. Diehl, W. Gilliland, G. Huxel, E. v. Leaver, K. McCann, J. Umbanhowar and A. Mogilner (2001). Non-local concepts and models in biology. J. Theor. Biol. 210, 201–219.CrossRefGoogle Scholar
  33. Lee, S., W. Liu, D. Dickson, C. Brosnan and J. Berman (1993). Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1. J. Immunol. 150, 2659–2667.Google Scholar
  34. Mackenzie, I. R., C. Hao and D. G. Munoz (1995). Role of microglia in senile plaque formation. Neurobiol. Aging 16, 797–804.CrossRefGoogle Scholar
  35. Maini, P., M. Myerscough, K. H. Winters and J. Murray (1991). Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern generation. Bull. Math. Biol. 53, 701–719.CrossRefzbMATHGoogle Scholar
  36. Mark, M. D., M. Lohrum and A. W. Püschel (1997). Patterning neuronal connections by chemorepulsion: the semaphorins. Cell Tissue Res. 290, 299–306.CrossRefGoogle Scholar
  37. Mazel, T., Z. Simonova and E. Sykova (1998). Diffusion heterogeneity and anisotropy in rat hippocampus. NeuroReport 9, 1299–1304.Google Scholar
  38. McLean, C., R. Cherny, F. Fraser, S. Fuller, M. Smith, K. Beyreuther, A. Bush and C. Masters (1999). Soluble pool of β-amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurobiol. 46, 860–866.CrossRefGoogle Scholar
  39. Michishita, M., Y. Yoshida, H. Uchino and K. Nagata (1990). Induction of tumor necrosis factor-α and its receptors during differentiation in myeloid leukemic cells along the monocytic pathway. a possible regulatory mechanism for TNF-α production. J. Biol. Chem. 265, 8751–8759.Google Scholar
  40. Moghe, P. V., R. D. Nelson and R. T. Tranquillo (1995). Cytokine-stimulated chemotaxis of human neutrophils in a 3-D conjoined fibrin gel assay. J. Immunol. Methods 180, 193–211.CrossRefGoogle Scholar
  41. Mogilner, A. and L. Edelstein-Keshet (1995). Selecting a common direction: I. how orientational order can arise from simple contact responses between interacting cells. J. Math. Biol. 33, 619–660.MathSciNetCrossRefzbMATHGoogle Scholar
  42. Mrak, R. E., J. G. Sheng and W. S. Griffin (2000). Glial cytokines in neurodegenerative conditions, in Neuro-Immune Interactions in Neurologic and Psychiatric Disorders, Patterson, Kordon and Christen (Eds), Berlin: Springer, pp. 9–17.Google Scholar
  43. Mrak, R. E., J. G. Sheng and W. S. T. Griffin (1995). Glial cytokines in Alzheimer’s disease: review and pathogenic implications. Human Pathology 26, 816–823.CrossRefGoogle Scholar
  44. Murray, J. D. (1993). Mathematical Biology, 2nd edn, Berlin, Heilderberg: Springer.zbMATHGoogle Scholar
  45. Myerscough, M., P. Maini and K. Painter (1998). Pattern formation in a generalized chemotactic model. Bull. Math. Biol. 60, 1–26.CrossRefzbMATHGoogle Scholar
  46. Nash, J. M. (2000). The new science of Alzheimer’s. Time July, 32–39.Google Scholar
  47. Nicholson, C. and E. Sykova (1998). Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 21, 207–215.CrossRefGoogle Scholar
  48. Nilsson, L., J. Rogers and H. Potter (1998). The essential role of inflammation and induced gene expression in the pathogenic pathway of Alzheimer’s disease. Front. Biosci. 3, 436–446.Google Scholar
  49. Nolte, C., T. Moller, T. Walter and H. Kettenmann (1996). Complement 5a controls motility of murine microglial cells in vitro via activation of an inhibitory G-protein and the rearrangement of the actin cytoskeleton. Neurosci. Sci. 73, 1109–1120.CrossRefGoogle Scholar
  50. Othmer, H. G., S. R. Dunbar and W. Alt (1988). Models of dispersal in biological systems. J. Math. Biol. 26, 263–298.MathSciNetCrossRefzbMATHGoogle Scholar
  51. Othmer, H. G. and A. Stevens (1997). Aggregation, blowup, and collapse: the ABC’s of taxis in reinforced random walks. SIAM J. Appl. Math. 57, 1044–1081.MathSciNetCrossRefzbMATHGoogle Scholar
  52. Painter, K., P. Maini and H. Othmer (1999). Stripe formation in juvenile pomacanthus explained by a generalized Turing mechanism with chemotaxis. Proc. Natl Acad. Sci. USA 96, 5549–5554.CrossRefGoogle Scholar
  53. Painter, K., P. Maini and H. Othmer (2000). Development and applications of a model for cellular response to multiple chemotactic cues. J. Math. Biol. 41, 285–314.MathSciNetCrossRefzbMATHGoogle Scholar
  54. Pennica, D., V. Lam, N. Mize, R. Weber, M. Lewis, B. Fendly, M. Lipari and D. Goeddel (1992). Biochemical properties of the 75-kDa tumor necrosis factor receptor. Characterization of ligand binding, internalization, and receptor phosphorylation. J. Biol. Chem. 267, 21172–21178.Google Scholar
  55. Rapoport, M., H. N. Dawes, L. I. Binder, M. P. Vitek and A. Ferriera (2002). Tau is essential to β-amyloid induced neurotoxicity. PNAS 99, 6364–6369.CrossRefGoogle Scholar
  56. Rivero, M. A., R. T. Tranquillo, H. M. Buettner and D. A. Lauffenburger (1989). Transport models for chemotactic cell populations based on individual cell behavior. Chem. Engineering Sci. 44, 2881–2897.CrossRefGoogle Scholar
  57. Sager, B. and D. Kaiser (1994). Intercellular c-signalling and the travelling waves of myxococcus. Genes Development 8, 2793–2804.Google Scholar
  58. Schaaf, R. (1985). Stationary solutions of chemotaxis systems. Trans. Am. Math. Soc. 292, 531–556.zbMATHMathSciNetCrossRefGoogle Scholar
  59. Selkoe, D. J. (1991). Amyloid protein and Alzheimer’s disease. Sci. Am. 265, 68–78.CrossRefGoogle Scholar
  60. Sheng, J. G., X. Q. Zhou, R. E. Mrak and W. S. T. Griffin (1998). Progressive neuronal injury associated with amyloid plaque formation in alzheimer disease. J. Neuropathol. Exp. Neurol. 57, 714–717.Google Scholar
  61. Sherratt, J. (1994). Chemotaxis and chemokinesis in eukaryotic cells: the Keller-Segel approximation to a detailed model. Bull. Math. Biol. 56, 129–146.zbMATHCrossRefGoogle Scholar
  62. Sherratt, J., E. Sage and J. Murray (1992). Chemical control of eukaryotic cell movement: a new model. J. Theor. Biol. 162, 23–40.CrossRefGoogle Scholar
  63. Shi, W. and D. R. Zusman (1994). Sensory adaptation during negative chemotaxis in Myxococcus xanthus. J. Bacteriol. 176, 1517–1520.Google Scholar
  64. Smits, H., L. A. Boven, C. Pereira, J. Verhoef and H. S. L. M. Nottet (2000). Role of macrophage activation in the pathogenesis of Alzheimer’s disease and human immunodeficiency virus type I-associated dementia. Eur. J. Clin. Invest. 30, 526–535.CrossRefGoogle Scholar
  65. Stalder, M., A. Phinney, A. Probst, B. Sommer, M. Staufenbiel and M. Jucker (1999). Association of microglia with amyloid plaques in brains of APP23 transgenic mice. Am. J. Pathol. 154, 1673–1684.Google Scholar
  66. Streit, W. J. (1995). Microglia cells, in Neuroglia, Chapter 5, H. Kettenmann and B. R. Ransom (Eds), New York: Oxford University Press, pp. 85–96.Google Scholar
  67. Sykova, E. (1997). The extracellular space in the CNS: Its regulation, volume, and geometry in normal and pathological neuronal function. The Neuroscientist 3, 28–41.Google Scholar
  68. Sykova, E., T. Mazel and Z. Simonova (1998). Diffusion constraints and neuron-glia interaction during aging. Exp. Gerontol. 33, 837–851.CrossRefGoogle Scholar
  69. Tranquillo, R., S. Zigmond and D. Lauffenburger (1988). Measurement of the chemotaxis coefficient for human neutrophils in the under-agarose migration assay. Cell Motil. Cytoskeleton 11, 1–15.CrossRefGoogle Scholar
  70. Turing, A. M. (1952). The chemical basis of morphogenesis. Phil. Trans. R. Soc. B237, 37–72.Google Scholar
  71. Venters, H. D., R. Dantzer and K. W. Kelley (2000). A new concept in neurodegeneration: TNF-α is a silencer of survival signals. Trends Neurosci. 23, 175–180.CrossRefGoogle Scholar
  72. Yamaguchi, M., M. Michishita, K. Hirayoshi, K. Yasukawa, M. Okuma and K. Nagata (1992). Down-regulation of interleukin 6 receptors of mouse myelomonocytic leukemic cells by leukemia inhibitory factor. J. Biol. Chem. 267, 22035–22042.Google Scholar
  73. Yao, J., L. Harvath, D. L. Gilbert and C. A. Colton (1990). Chemotaxis by a CNS macrophage, the microglia. J. Neurosci. Res. 27, 36–42.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2003

Authors and Affiliations

  • Magdalena Luca
    • 1
    Email author
  • Alexandra Chavez-Ross
    • 2
  • Leah Edelstein-Keshet
    • 2
  • Alex Mogilner
    • 3
  1. 1.Massachusetts College of Pharmacy and Health SciencesSchool of Arts and SciencesBostonUSA
  2. 2.Room 1211984, Mathematics Road, Mathematics Annex 1111, Department of MathematicsUniversity of British ColumbiaVancouver, British ColumbiaCanada
  3. 3.Department of Mathematics and Center for Genetics and DevelopmentUniversity of California, DavisDavisUSA

Personalised recommendations