Advertisement

Bulletin of Mathematical Biology

, Volume 65, Issue 2, pp 279–308 | Cite as

Mean residence times in linear compartmental systems. Symbolic formulae for their direct evaluation

  • M. J. García-Meseguer
  • J. A. Vidal de Labra
  • M. García-Moreno
  • F. García-Cánovas
  • B. H. Havsteen
  • R. Varón
Article

Abstract

A complete analysis has been performed of the mean residence times in linear compartmental systems, closed or open, with or without traps and with zero input. This analysis allows the derivation of explicit and simple general symbolic formulae to obtain the mean residence time in any compartment of any linear compartmental system, closed or open, with or without traps, as well as formulae to evaluate the mean residence time in the entire system like the above situations. The formulae are given as functions of the fractional transfer coefficients between the compartments and, in the case of open systems, they also include the excretion coefficients to the environment from the different compartments. The relationship between the formulae derived and the particular connection properties of the compartments is discussed. Finally, some examples have been solved.

Keywords

Entire System Compartmental System Connectivity Property Connectivity Diagram Fractional Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D. H. (1983). Compartmental modeling and tracer kinetics, Berlin: Springer.Google Scholar
  2. Aufderheide, A. C. and L. E. Wittmers (1992). Selected aspects of the spatial distribution of lead in bone. Neurotoxins 13, 809–819.Google Scholar
  3. Cheng, H. (1991). A method for calculating the mean residence times of catenary matabolites. Biopharm. Drug Dispos. 12, 335–342.Google Scholar
  4. Cheng, H. and W. J. Jusko (1990). Mean residence times of multicompartmental drugs undergoing reversible metabolism. Pharm. Res. 7, 103–107.CrossRefGoogle Scholar
  5. Cremonesi, M. et al. (1999). Biokinetics and dosimetry in patients administered with In-111-DOTA-Tyr(3)-octeotride: implications for internal radiotherapy with Y-90-DOTATOC. Eur. J. Nucl. Med. 26, 877–886.CrossRefGoogle Scholar
  6. Cutler, D. J. (1987). Definitions of mean residence times in Pharmacokinetics. Biopharm. Drug Dispos. 8, 87–97.Google Scholar
  7. Gálvez, J. and R. Varón (1981). Transient phase kinetics of enzyme reactions. J. Theor. Biol. 89, 1–17.CrossRefGoogle Scholar
  8. García-Meseguer, M. J., J. A. Vidal de Labra, F. García-Cánovas, B. H. Havsteen, M. García-Moreno and R. Varón (2001). Time course equations of the amount of substance in a linear compartmental system and their computerised derivation. Biosystems 59, 197–220.CrossRefGoogle Scholar
  9. Gibaldi, M. (1991). Biopharmaceutics and Clinical Pharmacokinetics, 4th edn, London: Lea & Febiger.Google Scholar
  10. Green, M. H. (1992). Introduction to modeling. J. Nutr. 122, 690–694.Google Scholar
  11. Hearon, J. Z. (1963). Theorems on linear systems. Ann. Ny. Acad. Sci. 108, 36–38.zbMATHMathSciNetGoogle Scholar
  12. Hearon, J. Z. (1972). Residence time in compartmental system and the moments of a certain distribution. Math. Biosci. 15, 69–77.zbMATHMathSciNetCrossRefGoogle Scholar
  13. Isoherranen, N., E. Lavy and S. Soback (2000). Pharmacokinetics of gentamicine C-1, C-1a, and C-2 in beagles after a single intravenous dose. Antimicrob. Agents. Chemother. 44, 1443–1447.CrossRefGoogle Scholar
  14. Jacquez, J. A. (1985). Compartmental Analysis in Biology and Medicine, 2nd edn, Michigan: The University of Michigan Press.Google Scholar
  15. Kong, A. and W. Jusko (1988). Definitions and applications of mean transit and residence times in reference to the two-compartment mammillary plasma clearance model. J. Pharm. Sci. 77, 157–165.Google Scholar
  16. Moolvakar, S. G. and A. Luebeck (1990). Two-events models for carcinogenesis: biological, mathematical and statistical considerations. Risk Anal. 10, 323–340.CrossRefGoogle Scholar
  17. Rescigno, A. (1956). A contribution to the theory of tracer methods. Part II. Biochem. Biophys., Acta. 21, 111–116.CrossRefGoogle Scholar
  18. Rescigno, A. (1999). Compartmental analysis revisited. Pharm. Res. 36, 471–478.CrossRefGoogle Scholar
  19. Rescigno, A. and E. Gurpide (1973). Estimation of average times of residence, recycle and interconversion of blood-borne compounds. JCE & M. 36, 263–276.Google Scholar
  20. Schuster, S. and R. Heinrich (1987). Time hierarchy in enzymatic reaction chains resulting from optimality principles. J. Theor. Biol. 129, 189–209.MathSciNetGoogle Scholar
  21. Sines, J. J. and D. Hackney (1987). A residence times analysis of enzyme kinetics. Biochem. J. 247, 159–164.Google Scholar
  22. Tozer, E. C. and T. E. Carew (1997). Residence time of low-density lipoprotein in the normal and atherosclerotic rabit aorta. Cos. Res. 80, 208–218.Google Scholar
  23. Varón, R. (1979). Estudio de sistemas de compartimientos y su aplicación a la fase de transición de reacciones enzimáticas, Doctoral Thesis, University of Murcia, Spain.Google Scholar
  24. Varón, R., M. J. García-Meseguer, F. García-Cánovas and B. H. Havsteen (1995). General model compartmental system with zero input I: kinetic equations. Biosystems 36, 121–133.CrossRefGoogle Scholar
  25. Veng-Pedersen, P. (1989). Mean time parameters in pharmacokinetics. Definition, computation and clinical implications. Part II. Clin. Pharmacokinet. 17, 424–440.Google Scholar
  26. Wastney, M. E., P. A. Angelus, R. M. Barnes and K. N. S. Subramanian (2000). Kinetic of zinc metabolism: variation with diet, genetics and disease. J. Nutr. 130(2 Suppl. S), 1355S–1359S.Google Scholar
  27. Wastney, M. E., W. A. House, R. M. Barnes and K. N. S. Subramanian (1999). Zinc absorption, distribution, excretion and retention by healthy preterm infants. Ped. Res. 45, 191–196.Google Scholar
  28. Wilson, P. D. G. and J. R. Dainty (1999). Modelling in nutrition: an introduction. Proc. Nutr. Soc. 58, 133–138.CrossRefGoogle Scholar
  29. Yamaoka, K., T. Nakagawa and T. Uno (1978). Statistical moments in pharmacokinetics. J. Pharmacokinet. Biopharm. 6, 547–557.CrossRefGoogle Scholar
  30. Zimmermann, T., H. Laufen, H. Yeates, F. Scharpf, K. D. Riedel and T. Schumacher (1999). The pharmacokinetics of extended-release formulations of calcium antagonists and amlodipine in subjects with differents gastrointestinal transit times. J. Clin. Pharm. 39, 1021–1031.CrossRefGoogle Scholar

Copyright information

© Society for Mathematical Biology 2003

Authors and Affiliations

  • M. J. García-Meseguer
    • 1
  • J. A. Vidal de Labra
    • 2
  • M. García-Moreno
    • 2
  • F. García-Cánovas
    • 3
  • B. H. Havsteen
    • 4
  • R. Varón
    • 5
  1. 1.Departamento de EnfermeríaUniversidad de Castilla-La ManchaAlbaceteSpain
  2. 2.Departamento de Química-FísicaUniversidad de Castilla-La ManchaAlbaceteSpain
  3. 3.Departamento de Bioquímica y Biología Molecular AUniversidad de MurciaMurciaSpain
  4. 4.Biochemisches InstitutChristian-Albrechts-Universität zu KielKielGermany
  5. 5.Departamento de Química-FísicaUniversidad de Castilla-La ManchaAlbaceteSpain

Personalised recommendations