Estimation of the electron affinities of C60, corannulene, and coronene by using the kinetic method

  • G. Chen
  • R. G. Cookscor
  • E. Corpuz
  • L. T. Scott
Article

Abstract

Novel anions that contain one molecule each of C60 and the polycyclic aromatic hydrocarbon coronene are generated in the gas phase by electron attachment desorption chemical ionization. Collision-induced dissociation reveals that these cluster ions are loosely bonded. Fragmentation of the mass-selected cluster anion yields, as the only products, the intact radical anions of the constituent molecules, namely, the C60 radical anion and the coronene radical anion, in almost identical relative abundances. This result is interpreted as evidence that the cluster ion can be considered as the anion radical of one molecule solvated by the other molecule. The known very high electron affinity of C60 (2.66 eV) and the comparable degree to which C60 and the PAH compete for the electron suggests that dissociation may be controlled by the electron affinity of a portion of the C60 surface, that is, in this case the kinetic method yields information on the local electron affinity of C60. The electron affinity of the bowl-shaped compound corannulene is estimated for the first time to be 0.50 ± 0.10 eV by the kinetic method by using a variety of reference compounds. Unlike coronene, corannulene reacts with C−•60 in the gas phase to form a covalently bonded, denydrogenated cluster ion. Support for the concept of “local” electron affinity of C60 comes from a theoretical calculation on the electronic structure of C60 anions, which shows evidence for localization of the charge in the C60 molecule. The possibility of electron tunneling in the C60-coronene system is discussed as an alternative explanation for the unusual observation of equal abundances of C60 anions and coronene anions upon dissociation of the corresponding cluster ion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rohlfing, E. A.; Cox, D. M.; Kaldor, A. J. Chem. Phys. 1984, 81, 3322.CrossRefGoogle Scholar
  2. 2.
    Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.CrossRefGoogle Scholar
  3. 3.
    Kràtschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354.CrossRefGoogle Scholar
  4. 4.
    Hirsch, A. Angew. Chem. Int. Ed. Engl. 1993, 32, 1138.CrossRefGoogle Scholar
  5. 5.
    Taylor, R.; Walton, D. R. M. Nature 1993, 363, 685.CrossRefGoogle Scholar
  6. 6.
    Schwarz, H. Angew. Chem. Int. Ed. Engl. 1992, 31, 293.CrossRefGoogle Scholar
  7. 7.
    Krusic, P. J.; Wasserman, E.; Parkinson, B. A.; Malone, B.; Holler, E. R. Jr.; Keizer, P. N.; Morton, J. R.; Preston, K. F. J. Am. Chem. Soc. 1991, 113, 6274.CrossRefGoogle Scholar
  8. 8.
    Krusic, P. J.; Wasserman, E.; Keizer, P. N.; Morton, J. R.; Preston, K. F. Science 1991, 254, 1183.CrossRefGoogle Scholar
  9. 9.
    Morton, J. R.; Preston, K. F.; Krusic, P. J.; Wasserman, E. J. Chem. Soc., Perkin Trans. 1992, 2, 1425.Google Scholar
  10. 10.
    Morton, J. R.; Preston, K. F.; Krusic, P. J.; Hill, S. A.; Wasserman, E. J. Phys. Chem. 1992, 96, 3576.CrossRefGoogle Scholar
  11. 11.
    Morton, J. R.; Preston, K. F.; Krusic, P. J.; Hill, S. A.; Wasserman, E. J. Am. Chem. Soc. 1992, 114, 5454.CrossRefGoogle Scholar
  12. 12.
    Hoke, S. H. II; Molstad, J.; Payne, G. L.; Kahr, B.; Ben-Amotz, D.; Cooks, R. G. Rapid Commun. Mass Spectrom. 1991, 5, 472.CrossRefGoogle Scholar
  13. 13.
    Bausch, J. W.; Prakash, G. K. S.; Olah, G. A.; Tse, D. S.; Lorents, D. C.; Bae, Y. K.; Malhotra, R. J. Am. Chem. Soc. 1991, 113, 3205.CrossRefGoogle Scholar
  14. 14.
    Olah, G. A.; Bucsi, I.; Lambert, C.; Aniszfeld, R.; Trivedi, N. J.; Sensharma, D. K.; Prakash, G. K. S. J. Am. Chem. Soc. 1991, 113, 9385.CrossRefGoogle Scholar
  15. 15.
    Hirsch, A.; Soi, A.; Karfunkel, H. R. Angew. Chem. Int. Ed. Engl. 1992, 31, 766.CrossRefGoogle Scholar
  16. 16.
    Fagan, P. J.; Krusic, P. J.; Evans, D. H.; Lerke, S. A.; Johnston, E. J. Am. Chem. Soc. 1992, 114, 9697.CrossRefGoogle Scholar
  17. 17.
    Taylor, R.; Langley, G. J.; Meidine, M. F.; Parsons, J. P.; Abdul-Sada, A. K.; Dennis, T. J.; Hare, J. P.; Kroto, H. W.; Walton, D. R. M. J. Chem. Soc., Chem. Commun. 1992, 667.Google Scholar
  18. 18.
    Wood, J. M.; Kahr, B.; Hoke, S. H. II; Dejarme, L.; Cooks, R. G.; Ben-Amotz, D. J. Am. Chem. Soc. 1991, 113, 5907.CrossRefGoogle Scholar
  19. 19.
    Smith, A. B. III; Strongin, R. M.; Brard, L.; Furst, G. T.; Romanow, W. J.; Owens, K. G.; King, R. C. J. Am. Chem. Soc. 1993, 115, 5829.CrossRefGoogle Scholar
  20. 20.
    Suzuki, T.; Li, Q.; Khemani, K. C.; Wudl, F.; Almarsson, O. Science 1991, 254, 1186.CrossRefGoogle Scholar
  21. 21.
    Suzuki, T.; Li, Q.; Khemani, K. C.; Wudl, F.; Almarsson, O. J. Am. Chem. Soc. 1992, 114, 7300.CrossRefGoogle Scholar
  22. 22.
    Vasella, A.; Uhlmann, P.; Waldraff, C. A. A.; Diederich, F.; Thilgen, C. Angew. Chem. Int. Ed. Engl. 1992, 31, 1388.CrossRefGoogle Scholar
  23. 23.
    Shi, S.; Khemani, K. C.; Li, Q. C.; Wudl, F. J. Am. Chem. Soc. 1992, 114, 10656.CrossRefGoogle Scholar
  24. 24.
    Hoke, S. H. II; Molstad, J.; Dilettato, D.; Jay, M. J.; Carlson, D.; Kahr, B.; Cooks, R. G. J. Org. Chem. 1992, 57, 5069.CrossRefGoogle Scholar
  25. 25.
    Tsuda, M.; Ishida, T.; Nogami, T.; Kurono, S.; Ohashi, M. Chem. Lett. 1992, 2333.Google Scholar
  26. 26.
    Rubin, Y.; Kahn, S.; Freedberg, D. I.; Yeretzian, C. J. Am. Chem. Soc. 1993, 115, 344.CrossRefGoogle Scholar
  27. 27.
    Kahn, S. I.; Oliver, A. M.; Paddon-Row, M. N.; Rubin, Y. J. Am. Chem. Soc. 1993, 115, 4919.CrossRefGoogle Scholar
  28. 28.
    Wilson, S. R.; Kaprinidis, N.; Wu, Y.; Schuster, D. I. J. Am. Chem. Soc. 1993, 115, 8495.CrossRefGoogle Scholar
  29. 29.
    Prato, M.; Suzuki, T.; Foroudian, H.; Li, Q.; Khamani, K.; Wudl, F.; Leonetti, J.; Little, R. D.; White, T.; Rickborn, B.; Yamago, S.; Nakamura, E. J. Am. Chem. Soc. 1993, 115, 1594.CrossRefGoogle Scholar
  30. 30.
    Hoke, S. H. II, Molstad, J.; Kahr, B.; Cooks, R. G. Int. J. Mass Spectrom. Ion Processes 1994, 138, 209.CrossRefGoogle Scholar
  31. 31.
    Ross, M. M.; Callahan, J. H. J. Phys. Chem. 1991, 95, 5720.CrossRefGoogle Scholar
  32. 32.
    Sunderlin, L. S.; Paulino, J. A.; Chow, J.; Kahr, B.; Ben-Amotz, D.; Squires, R. R. J. Am. Chem. Soc. 1991, 113, 5489.CrossRefGoogle Scholar
  33. 33.
    Petrie, S.; Javahery, G.; Wang, J.; Bohme, D. K. J. Am. Chem. Soc 1992, 114, 9177.CrossRefGoogle Scholar
  34. 34.
    Javahery, G.; Petrie, S.; Wincel, H.; Wang, J.; Bohme, D. K. J. Am. Chem. Soc. 1993, 115, 5716, 6295.CrossRefGoogle Scholar
  35. 35.
    Martin, T. P.; Náher, U.; Schaber, H.; Zimmermann, U. Phys. Rev. Lett. 1993, 70, 3079.CrossRefGoogle Scholar
  36. 36.
    Yeretzian, C.; Hansen, K.; Diederich, F.; Whetten, R. L. Nature 1992, 359, 44.CrossRefGoogle Scholar
  37. 37.
    Pradeep, T.; Cooks, R. G. Int. J. Mass Spectrom. Ion Processes 1994, 135, 243.CrossRefGoogle Scholar
  38. 38.
    McElvany, S. W.; Ross, M. M.; Callahan, J. H. Acc. Chem. Res. 1992, 25, 162.CrossRefGoogle Scholar
  39. 39.
    McElvany, S. W.; Ross, M. M. J. Am. Soc. Mass Spectrom. 1992, 3, 268.CrossRefGoogle Scholar
  40. 40.
    Moriwaki, T.; Matsuura, H.; Aihara, K.; Shiromaru, H.; Achiba, Y. J. Phys. Chem. 1992, 96, 9092.CrossRefGoogle Scholar
  41. 41.
    Moriwaki, T.; Shriomaru, H.; Achiba, Y. Z. Phys. D 1993, 26, S320.Google Scholar
  42. 42.
    Gunnarsson, O.; Handschuh, H.; Bechthold, P. S.; Kessler, B.; Ganteför, G.; Eberhardt, W. Phys. Rev. Lett. 1995, 74, 1875.CrossRefGoogle Scholar
  43. 43.
    Matejčik, Š.; Märk, T. D.; Španěl, P.; Smith, D. J. Chem. Phys. 1995, 102, 2516.CrossRefGoogle Scholar
  44. 44.
    Yang, S. H.; Pettiette, C. L.; Conceicao, J.; Cheshnovsky, O.; Smalley, R. E. Chem. Phys. Lett. 1987, 139, 233.CrossRefGoogle Scholar
  45. 45.
    Wang, L.; Pettiette, C. L.; Conceicao, J.; Cheshnovsky, O.; Smalley, R. E. Chem. Phys. Lett. 1991, 182, 5.CrossRefGoogle Scholar
  46. 46.
    Brink, C.; Andersen, L. H.; Hvelplund, P.; Mathur, D.; Voldstad, J. D. Chem. Phys. Lett. 1995, 233, 52.CrossRefGoogle Scholar
  47. 47.
    Saito, G.; Teramoto, T.; Otsuka, A.; Sugita, Y.; Ban, T.; Kusunoki, M.; Sakaguchi, K. Synthetic Metals 1994, 64, 359.CrossRefGoogle Scholar
  48. 48.
    Boltalina, O. V.; Sidorov, L. N.; Borshchevsky, A. Ya.; Sukhanova, E. V.; Skokan, E. V. Rapid Commun. Mass Spectrom. 1993, 7, 1009.CrossRefGoogle Scholar
  49. 49.
    Boltalina, O. V.; Sidorov, L. N.; Sukhanova, E. V.; Sorokin, I. D. Chem. Phys. Lett. 1994, 230, 567.CrossRefGoogle Scholar
  50. 50.
    Hettich, R.; Jin, C.; Compton, R. Int. J. Mass Spectrom. Ion Processes 1994, 138, 263.CrossRefGoogle Scholar
  51. 51.
    Smith, D.; Spanel, P.; Märk, T. D. Chem. Phys. Lett. 1993, 213, 202.CrossRefGoogle Scholar
  52. 52.
    Scott, L. T.; Hashemi, M. M.; Bratcher, M. S. J. Am. Chem. Soc. 1992, 114, 1920.CrossRefGoogle Scholar
  53. 53.
    Schulman, J. M.; Disch, R. L. J. Am. Chem. Soc. 1994, 116, 1533.CrossRefGoogle Scholar
  54. 54.
    Rabideau, P. W.; Sygula, A. J. Chem. Soc., Chem. Commun. 1994, 1497.Google Scholar
  55. 55.
    Ayalon, A.; Rabinovitz, M.; Cheng, P. C.; Scott, L. T. Angew. Chem. 1992, 104, 1691.CrossRefGoogle Scholar
  56. 56.
    Javahery, G.; Becker, H.; Petrie, S.; Cheng, P. C.; Schwarz, H.; Scott, L. T.; Bohme, D. K. Org. Mass Spectrom. 1993, 28, 1005.CrossRefGoogle Scholar
  57. 57.
    Becker, H.; Javahery, G.; Petrie, S.; Cheng, P. C.; Schwarz, H.; Scott, L. T.; Bohme, D. K. J. Am. Chem. Soc. 1993, 115, 11636.CrossRefGoogle Scholar
  58. 58.
    Cooks, R. G.; Patrick, J. S.; Kotiaho, T.; McLuckey, S. A. Mass Spectrom. Rev. 1994, 13, 287.CrossRefGoogle Scholar
  59. 59.
    Burinsky, D. J.; Fukuda, E. K.; Campana, J. E. J. Am. Chem. Soc. 1984, 106, 2770.CrossRefGoogle Scholar
  60. 60.
    Chen, G.; Cooks, R. G. J. Mass Spectrom. 1995, 30, 1167.CrossRefGoogle Scholar
  61. 61.
    Scott, L. T.; Hashemi, M. M.; Meyer, D. T.; Warren, H. B. J. Am. Chem. Soc. 1991, 113, 7082; Abstract 64.CrossRefGoogle Scholar
  62. 62.
    Christodoulides, A. A.; McCorkle, D. L.; Christophorou, L. G. Electron Molecule Interactions and Their Applications; Christophorou, L. G., Ed.; Academic: New York, 1984; Vol. 2, p 601.Google Scholar
  63. 63.
    Cooks, R. G.; Rockwood, A. L. Rapid Commun. Mass Spectrom. 1991, 5, 93.Google Scholar
  64. 64.
    Sprang, H.; Mahlkow, A.; Campbell, E. E. B. Chem. Phys. Lett. 1994, 227, 91.CrossRefGoogle Scholar
  65. 65.
    Christodoulides, A. A.; McCorkle, D. L.; Christophorou, L. G. Electron Molecule Interactions and Their Applications; Christophorou, L. G., Ed.; Academic: New York, 1984; Vol. 2, p. 423.Google Scholar
  66. 66.
    Hoke, S. H. II; Yang, S. S.; Cooks, R. G.; Hrovat, D. A.; Borden, W. T. J. Am. Chem. Soc. 1994, 116, 4888.CrossRefGoogle Scholar
  67. 67.
    Campbell, S.; Beauchamp, J. L. Proc. SPIE-Int. Soc. Opt. Eng. 1992, 1636, 201.Google Scholar
  68. 68.
    Kaltashov, I. A.; Fabris, D.; Fenselau, C. Presented at the 42nd ASMS Conference on Mass Spectrometry and Allied Topics; Chicago, IL, June 1994.Google Scholar
  69. 69.
    Eberlin, M. N.; Kotiaho, T.; Shay, B. J.; Yang, S. S.; Cooks, R. G. J. Am. Chem. Soc. 1994, 116, 2457.CrossRefGoogle Scholar
  70. 70.
    Yang, S. S.; Bortolini, O.; Steinmetz, A.; Cooks, R. G. J. Mass Spectrom. 1995, 30, 184.CrossRefGoogle Scholar
  71. 71.
    Yang, S. S.; Chen, G.; Ma, S.; Cooks, R. G.; Gozzo, F. C.; Eberlin, M. N. J. Mass Spectrom. 1995, 30, 807.CrossRefGoogle Scholar
  72. 72.
    Wentworth, W. E.; Chen, E.; Lovelock, J. E. J. Phys. Chem. 1966, 70, 445.CrossRefGoogle Scholar
  73. 73.
    Mullin, A. S.; Murray, K. K.; Schulz, C. P.; Lineberger, W. C. J. Phys. Chem. 1993, 97, 10281.CrossRefGoogle Scholar
  74. 74.
    Mead, R. D.; Lykke, K. R.; Lineberger, W. C.; Marks, J.; Brauman, J. I. J. Chem. Phys. 1984, 81, 4883.CrossRefGoogle Scholar
  75. 75.
    Marks, J.; Brauman, J. I.; Mead, R. D.; Lykke, K. R.; Lineberger, W. C. J. Chem. Phys. 1988, 88, 6785.CrossRefGoogle Scholar
  76. 76.
    Lykke, K. R.; Neumark, D. M.; Andersen, T.; Trapa, V. J.; Lineberger, W. C. J. Chem. Phys. 1987, 87, 6842.CrossRefGoogle Scholar
  77. 77.
    Marks, J.; Wetzel, D. M.; Comita, P. B.; Brauman, J. E. J. Chem. Phys. 1986, 84, 5284.CrossRefGoogle Scholar
  78. 78.
    Andersen, T.; Lykke, K. R.; Neumark, D. M.; Lineberger, W. C. J. Chem. Phys. 1987, 86, 1858.CrossRefGoogle Scholar
  79. 79.
    Huffman, D. R. Physics Today 1991, Nov. 22.Google Scholar
  80. 80.
    Curl, R. F. Philos. Trans. R. Soc. London, Ser. A 1993, 343, 19.CrossRefGoogle Scholar
  81. 81.
    Boo, W. O. J. J. Chem. Educ. 1992, 69, 605.CrossRefGoogle Scholar
  82. 82.
    Stafström, S. Int. J. Modem Phys. A 1992, 6, 3853.CrossRefGoogle Scholar
  83. 83.
    Brown, P.; Bruschweiler, F. R.; Pettit, G. R.; Richstein, T. J. Am. Chem. Soc. 1970, 92, 4470.CrossRefGoogle Scholar
  84. 84.
    Binnig, G.; Rohrer, H.; Gerber, Ch.; Weibel, E. Phys. Rev. Lett. 1982, 49, 57.CrossRefGoogle Scholar
  85. 85.
    McEwen, C. N.; McKay, R. G.; Larsen, B. S. J. Am. Chem. Soc. 1992, 114, 4412.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 1996

Authors and Affiliations

  • G. Chen
    • 1
  • R. G. Cookscor
    • 1
  • E. Corpuz
    • 2
  • L. T. Scott
    • 2
  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA
  2. 2.Department of ChemistryMerkert Chemistry Center, Boston CollegeChestnut HillUSA

Personalised recommendations