Direct analysis of carbon isotope variability in albumins by liquid flow-injection isotope ratio mass spectrometry

  • Richard J. Caimi
  • J. Thomas Brenna
Short Communication

Abstract

We demonstrate the high precision C isotopic analysis of a series of purified albumins by liquid chromatography-combustion isotope ratio mass spectrometry (IRMS) by using direct aqueous liquid injection. Albumins from 18 species and albumens from chicken and turkey egg were obtained from a commercial source and shown to be of > 98% purity by capillary zone electrophoresis and high-performance liquid chromatography. One microliter of an aqueous protein solution with a total of < 40-pmol protein (2. 5 µg), which contained about 150-nmol C, was injected directly into a flowing stream of high-performance liquid chromatography grade water. The solution passed through a pneumatic nebulizer, was sprayed onto a moving wire, passed through a drying oven, and was combusted in a furnace. After the water of combustion was removed, the resulting CO2 gas was directed to a high precision IRMS instrument operated in continuous flow mode. The average precision across the 20 samples analyzed was SD(δ 13C)=0.45%., and the average accuracy was δ13C < 0.4%. compared to aliquots analyzed by conventional preparation by using combustion tubes and dual inlet analysis. The observed isotope ratio range was about −22.5%. < δ 13CPDB < −16%. as expected for modern materials from a natural source. These results demonstrate rapid, high precision, and accurate C isotopic analysis of untreated macromolecules in an aqueous stream by liquid source IRMS.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ehleringer, J. R.; Rundel, P. W. Stable Isotopes, History, Units, and Instrumentation. In Stable Isotopes in Ecological Research; Rundel, P. W.; Ehleringer, J. R.; Nagy, K. A., Eds.; Springer-Verlag: New York, 1988.Google Scholar
  2. 2.
    Nier, A. O. Rev. Sci. Instrum. 1940, 11, 212–216.CrossRefGoogle Scholar
  3. 3.
    Guilluy, R.; Billion-Rey, F.; Pachiaudi, C.; Normand, S.; Roud, J. P.; Jumeau, E. J.; Brazier, J. L. Anal. Chim. Acta 1992, 259, 193–202.CrossRefGoogle Scholar
  4. 4.
    Hilkert, A. W.; Brand, W. A. Second World Conference on Stable Isotope and Nutrition Metabolism Research; 1994, L14Google Scholar
  5. 5.
    Sano, M.; Yotsui, Y.; Abe, H.; Sasaki, S. Biomed. Mass Spectrom. 1976, 3, 1–3.CrossRefGoogle Scholar
  6. 6.
    Matthews, D. E.; Hayes, J. M. Anal. Chem. 1978, 50, 1465–1473.CrossRefGoogle Scholar
  7. 7.
    Caimi, R. J.; Brenna, J. T. Anal. Chem. 1993, 23, 3497–3500.CrossRefGoogle Scholar
  8. 8.
    Caimi, R. J.; Brenna, J. T. J. Mass Spectrom. 1995, 30, 466–472.CrossRefGoogle Scholar
  9. 9.
    Cohn, E. J.; Strong, L. E.; Hughes, W. L., Jr.; Mulford, D. J.; Ashworth, J. N.; Melin, M.; Taylor, H. L. J. Am. Chem. Soc. 1946, 68, 459–475.CrossRefGoogle Scholar
  10. 10.
    Goodman, K. J.; Brenna, J. T. Anal. Chem. 1992, 64, 1088–1095.CrossRefGoogle Scholar
  11. 11.
    Craig, H. Geochim. Cosmochim. Acta 1957, 12, 133–149.CrossRefGoogle Scholar
  12. 12.
    Minson, D. J.; Ludlow, M. M.; Troughton, J. H. Nature 1975, 256, 602.CrossRefGoogle Scholar
  13. 13.
    Haines, E. B. Limnol. Oceanogr. 1976, 21, 880.CrossRefGoogle Scholar
  14. 14.
    Fry, B.; Joern, A.; Parker, P. L. Ecology 1978, 59, 498–506.CrossRefGoogle Scholar
  15. 15.
    DeNiro, M. J.; Epstein, S. Geochim. Cosmochim. Acta 1978, 42, 495–506.CrossRefGoogle Scholar
  16. 16.
    Mosora, F.; Lacroix, M.; Duchesne, J. C. R. Acad. Sci. Paris Ser. D 1971, 42, 273, 1752–1753.Google Scholar
  17. 17.
    McConnaughey, T.; McRoy, C. P. Marine Biol. 1979, 53, 257–262.CrossRefGoogle Scholar
  18. 18.
    Park, R.; Epstein, S. Geochim. Cosmochim. Acta 1980, 21, 110–126.CrossRefGoogle Scholar
  19. 19.
    Christeller, J. T.; Laing, W. A.; Troughton, J. H. Plant Physiol. 1976, 57, 580–582.CrossRefGoogle Scholar
  20. 20.
    Smith, B. N.; Epstein, S. Plant Physiol. 1971, 47, 380–384.CrossRefGoogle Scholar
  21. 21.
    Lerman, J. C. In Environmental and Biological Control of Photosynthesis; Marcelle, R., Eds.; Junk: The Hague, 1975, pp. 323–335.Google Scholar
  22. 22.
    Teeri, J. A.; Schoeller, D. A. Oecologia 1979, 39, 197–200.CrossRefGoogle Scholar
  23. 23.
    Schoeninger, M. J.; DeNiro, M. J. Ceochim. Cosmochim. Acta 1984, 48, 625–639.CrossRefGoogle Scholar
  24. 24.
    Tauber, H. Nature 1981, 292, 332–333.CrossRefGoogle Scholar
  25. 25.
    Lyon, T. D. B.; Baxter, M. S. Nature 1978, 273, 750–751.CrossRefGoogle Scholar
  26. 26.
    Jones, R. J.; Ludlow, M. M.; Troughton, J. H.; Blunt, C. G. J. Agr. Sci. 1979, 92, 91–100.CrossRefGoogle Scholar
  27. 27.
    Ambrose, S. H.; DeNiro, M. J. Oecologia 1986, 69, 395–406.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 1996

Authors and Affiliations

  • Richard J. Caimi
    • 1
  • J. Thomas Brenna
    • 1
  1. 1.Division of Nutritional SciencesCornell UniversityIthacaUSA

Personalised recommendations