Mass spectrometric measurement of changes in protein hydrogen exchange rates that result from point mutations

  • Richard S. Johnson


Point mutations, as well as additions or deletions of entire domains, are frequently produced to study protein function; however, to infer function from mutant proteins, it is imperative that their structural integrity be verified. Although detailed structural studies can be performed by using NMR or crystallography, for practical reasons mutant proteins usually are characterized by using less rigorous techniques. Here it is shown that measurement of hydrogen exchange rates via electrospray ionization mass spectrometry is a sensitive and generally applicable method for detection of conformational or dynamic changes that result from point mutations. Hydrogen exchange experiments were performed on a bacterial phosphocarrier protein (HPr) and two variants produced by conversion of either serine-46 to aspartic acid (S46D) or serine-31 to alanine (S31A), where the differences in the ΔG of folding relative to the wild type were 1.5 and 0.5 kcal/mol, respectively. Whereas no significant differences were found for the intact mutant and wild-type proteins, changes in deuterium incorporation could be detected within specific regions produced by peptic proteolysis of the deuterium-labeled proteins. Thus, energetically small changes in conformation (or dynamics) that result from point mutations can be characterized by mass spectrometric measurements of hydrogen exchange rates. Furthermore, these changes can be localized to specific regions within the protein.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Science 1989, 246, 64–71.CrossRefGoogle Scholar
  2. 2.
    Katta, V.; Chait, B. T. Rapid Commun. Mass Spectrom. 1991, 5, 214–217.CrossRefGoogle Scholar
  3. 3.
    Katta, V.; Chait, B. T. J. Am. Chem. Soc. 1993, 115, 6317–6321.CrossRefGoogle Scholar
  4. 4.
    Miranker, A.; Robinson, C. V.; Radford, S. E.; Aplin, R. T.; Dobson, C. M. Science 1993, 262, 896–899.CrossRefGoogle Scholar
  5. 5.
    Robinson, C. V.; Grob, M.; Eyles, S. J.; Ewbank, J. J.; Mayhew, M.; Hartl, F. U.; Dobson, C. M.; Radford, S. E. Nature 1994, 372, 646–651.CrossRefGoogle Scholar
  6. 6.
    Muir, T. W.; Williams, M. J.; Kent, S. B. H. Anal. Biochem. 1995, 224, 100–109.CrossRefGoogle Scholar
  7. 7.
    Anderegg, R. J.; Wagner, D. S. J. Am. Chem. Soc. 1995, 127, 1374–1377.CrossRefGoogle Scholar
  8. 8.
    Anderegg, R. J.; Wagner, D. S.; Stevenson, C. L.; Borchardt, R. T. J. Am. Soc. Mass Spectrom. 1994, 5, 425–433.CrossRefGoogle Scholar
  9. 9.
    Johnson, R. S.; Krylov, D.; Walsh, K. A. J. Mass Spectrom. 1995, 30, 386–387.CrossRefGoogle Scholar
  10. 10.
    Suckau, D.; Shi, Y.; Beu, S. C.; Senko, M. W.; Quinn, J. P.; Wampler, F. M.; McLafferty, F. W. Proc. Natl. Acad. Sci USA 1993, 90, 790–793.CrossRefGoogle Scholar
  11. 11.
    Zhang, Z.; Smith, D. L. Protein Sci. 1993, 2, 522–531.CrossRefGoogle Scholar
  12. 12.
    Rosa, J. J.; Richards, J. M. J. Mol. Biol. 1979, 133, 399–416.CrossRefGoogle Scholar
  13. 13.
    Englander, J. J.; Rogero, J. R.; Englander, S. W. Anal. Biochem. 1985, 47, 234–244.CrossRefGoogle Scholar
  14. 14.
    Liu, Y.; Smith, D. L. J. Am. Soc. Mass Spectrom. 1994, 5, 19–28.CrossRefGoogle Scholar
  15. 15.
    Zhang, Z.; Post, C. B.; Smith, D. L. Proceedings of the 42nd ASMS Conference on Mass Spectrometry and Allied Topics; 1994; p 903.Google Scholar
  16. 16.
    Ng, J.; Smith, D. L., Proceedings of the 42nd ASMS Conference on Mass Spectrometry and Allied Topics; 1994; p 906.Google Scholar
  17. 17.
    Johnson, R. S.; Walsh, K. A. Protein Sci. 1994, 3, 2418.Google Scholar
  18. 18.
    Griko, Y. V.; Privalov, P. L.; Venyaminov, S. Y.; Kutyshenko, V. P. J. Mol. Biol. 1988, 202, 127–138.CrossRefGoogle Scholar
  19. 19.
    Chien, N. C.; Roberts, V. A.; Giusti, A. M.; Scharff, M. D.; Getzoff, E. D. Proc. Natl. Acad. Sci. USA 1989, 86, 5532–5536.CrossRefGoogle Scholar
  20. 20.
    Schimmel, P. Biochemistry 1990, 29, 9495–9501.CrossRefGoogle Scholar
  21. 21.
    Mei, B.; Zalkin, H. J. Biol. Chem. 1989, 264, 16613–16619.Google Scholar
  22. 22.
    Meadow, N. D.; Fox, D. K.; Roseman, S. Ann. Rev. Biochem. 1990, 59, 497–542.CrossRefGoogle Scholar
  23. 23.
    Hammen, P. K.; Scholtz, J. M.; Anderson, J. W.; Waygood, E. B.; Klevit, R. E. Protein Sci. 1995, 4, 936–944.CrossRefGoogle Scholar
  24. 24.
    Jaquinod, M.; Halgand, F.; Caffrey, M.; Saint-Pierre, C.; Gagnon, J.; Fitch, J.; Cusanovich, M.; Forest, E. Rapid Commun. Mass Spectrom. 1995, 9, 1135–1140.CrossRefGoogle Scholar
  25. 25.
    Hammen, P. K.; Waygood, E. B.; Klevit, R. E. Biochemistry 1991, 30, 11842–11850.CrossRefGoogle Scholar
  26. 26.
    Bai, Y.; Milne, J. S.; Mayne, L.; Englander, S. W. Proteins: Structure, Function, and Genetics 1993, 37, 75–86.CrossRefGoogle Scholar
  27. 27.
    Creighton, T. E. Proteins: Structure and Molecular Properties, 2nd ed.; W. H. Freeman and Company: New York, 1993; pp 282–286.Google Scholar
  28. 28.
    Gregory, R. B.; Rosenberg, A. In Methods in Enzymology, Vol. 131; Hirs, C. H. W.; Timasheff, S. N., Eds.; Academic Press: Orlando, 1986; pp 448–508.Google Scholar

Copyright information

© American Society for Mass Spectrometry 1996

Authors and Affiliations

  • Richard S. Johnson
    • 1
  1. 1.Department of BiochemistryUniversity of WashingtonSeattleUSA

Personalised recommendations