Mass spectrometric analysis of four regioisomers of F2-isoprostanes formed by free radical oxidation of arachidonic acid

  • Russell J. Waugh
  • Robert C. Murphy
Article

Abstract

F2-isoprostanes are complex metabolites of arachidonic acid generated via nonenzymatic free radical oxidation and are isomeric to prostaglandin F, enzymatically produced by prostaglandin H2 synthase. In theory, four distinct regioisomeric families are possible. These regioisomeric families have a common 1,3-diol cyclopentane structural feature, but differ by the comparative length of two attached alkyl chains and the position of a third hydroxyl group. Eight synthetic PGF isomers were found separable by capillary gas chromatography (GC) and reversed-phase high-performance liquid chromatography (HPLC). Electrospray ionization tandem mass spectrometry was used to detect the elution of these isomers from the HPLC column by monitoring the characteristic loss of 44 u (C2H4O) from the 1,3-diol cyclopentane ring. Catalytic reduction, derivatization, and electron ionization mass spectrometric techniques were used to obtain definitive information as to the location of the side chain hydroxyl position in these isomers through abundant α-cleavage ions. Free radical oxidation of arachidonic acid was used to generate a complex mixture of F2-isoprostanes, which were separated by HPLC and capillary GC. Members of each of the four specific regioisomeric isoprostane families could be identified in this mixture from the predicted α-cleavage ions. Although many epimers within a single family type could be separated, the four regioisomeric families were substantially superimposed in their HPLC and GC elution. The Type I and Type IV regioisomers were the major F2-isoprostane products, but the complexity of the isomers required more than a simple GC-mass spectrometry assay to precisely identify a particular stereoisomer within a regioisomeric family (e. g., 8-epi-PGF). Type I F2-isoprostanes are unique noncyclooxygenase products and may be more specific targets to measure lipid peroxidation in vivo.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pryor, W. A. Ann. Rev. Physiol. 1986, 48, 657–667.CrossRefGoogle Scholar
  2. 2.
    Halliwell, B.; Gutteridge, J. M. C. In Free Radicals in Biology and Medicine. Oxford University Press, UK, 1989.Google Scholar
  3. 3.
    Shimizu, T.; Kondo, K.; Hayaishi, O. Arch. Biochem. Biophys. 1989, 206, 271–279.CrossRefGoogle Scholar
  4. 4.
    Morrow, J. D.; Harris, T. M.; Roberts, L. J., II. Anal. Biochem. 1990, 184, 1–10.CrossRefGoogle Scholar
  5. 5.
    Morrow, J. D.; Hill, K. E.; Burk, R. F.; Nammour, T. M.; Badr, K. F.; Roberts, L. J., II Proc. Natl. Acad. Sci. U. S. A. 1990, 87, 9383.CrossRefGoogle Scholar
  6. 6.
    Morrow, J. D.; Minton, T. A.; Mukundan, C. R.; Campbell, M. D.; Zackert, W. E.; Daniel, V. C.; Badr, K. F.; Blair, I. A.; Roberts, L. J., II. J. Biol. Chem. 1994, 269, 4317–4326.Google Scholar
  7. 7.
    Morrow, J. D.; Awad, J. A.; Kato, T.; Takahashi, K.; Badr, K. F.; Roberts, L. J., II; Burk, R. F. J. Clin. Invest. 1994, 90, 2502–2507.CrossRefGoogle Scholar
  8. 8.
    Morrow, J. D.; Minton, T. A.; Roberts, L. J., II. Prostaglandins 1992, 44, 155–163.CrossRefGoogle Scholar
  9. 9.
    Takahashi, K.; Nammour, T. M.; Fukunaga, M.; Ebert, J.; Morrow, J. D.; Roberts, L. J., II. Hoover, R. L.; Badr, K. F. J. Clin. Invest. 1992, 29, 136–141.CrossRefGoogle Scholar
  10. 10.
    Kennedy, T. P.; Rao, N. V.; Hopkins, C.; Pennington, L.; Tolley, E.; Hoidal, J. R. J. Clin. Invest. 1989, 83, 1326–1335.CrossRefGoogle Scholar
  11. 11.
    Tarr, M.; Samson, F., Eds. Oxygen Free Radicals in Tissue Injury. Birkhauser: Boston, 1993.Google Scholar
  12. 12.
    Warren, J. S.; Ward, P. A.; Johnson, K. J. In Mediators of the Inflammatory Process; Henson, P. M.; Murphy, R. C., Eds.; Elsevier: Amsterdam, 1989; p 159.Google Scholar
  13. 13.
    Roberts, L. J. II; Morrow, J. D. Adv. Prostaglandin, Thromboxane, Leukotriene Res. 1995, 23, 219.Google Scholar
  14. 14.
    Morrow, J. D.; Roberts, L. J., II. Methods Enzymol. 1994, 233, 163–175.CrossRefGoogle Scholar
  15. 15.
    Morrow, J. D.; Roberts, L. J. III; Free Radical Biol. Med. 1991, 10, 195–200.CrossRefGoogle Scholar
  16. 16.
    Morrow, J. D.; Minton, T. A.; Badr, K. F.; Roberts, L. J. II; Biochim. Biophys. Acta. 1994, 1210, 244–248.Google Scholar
  17. 17.
    Wheelan, P.; Zirrolli, J. A.; Murphy, R. C. J. Am. Soc. Mass Spectrom. 1995, 6, 40–51.CrossRefGoogle Scholar
  18. 18.
    Sala, A.; Voelkel, N.; Maclouf, J.; Murphy, R. C. J. Biol. Chem. 1995, 265, 21771–21778.Google Scholar
  19. 19.
    Zirrolli, J. A.; Davoli, E.; Bettazzoli, L.; Gross, M. L.; Murphy, R. C. J. Am. Soc. Mass. Spectrom. 1990, 1, 325–335.CrossRefGoogle Scholar
  20. 20.
    Gopaul, N. K.; Änggärd, E. E.; Mallet, A. I.; Betteridge, D. J.; Wolff, S. P.; Nourooz-Zadeh, J. FEBS Lett. 1995, 368, 225–229.CrossRefGoogle Scholar
  21. 21.
    Draffan, G. H.; Stillwell, R. N.; McCloskey, J. A. Org. Mass Spectrom. 1968, 1, 669.CrossRefGoogle Scholar
  22. 22.
    Halliwell, B.; Gutteridge, J. M. Biochem. J. 1984, 219, 1–14.Google Scholar
  23. 23.
    Murphy, R. C. In The Handbook of Lipid Research Plenum Press: New York, 1993.Google Scholar
  24. 24.
    Pratico, D.; Lawson, J. A.; FitzGerald, G. A. J. Biol. Chem. 1995, 270, 9800–9808.CrossRefGoogle Scholar
  25. 25.
    Ciabattoni, G.; Patrono, C.; van Kooten, V.; Koudstaal, P. J. J. Invest. Med. 1995, 43, Suppl. 2, 292A.Google Scholar
  26. 26.
    Centado, J. J.; Adams, J.; Gross, M. L. Adv. Mass Spectrom. 1989, 11B, 1034–1035.Google Scholar
  27. 27.
    Harrison, K. A.; Murphy, R. C. J. Biol. Chem. 1995, 270, 17273–17278.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 1996

Authors and Affiliations

  • Russell J. Waugh
    • 1
  • Robert C. Murphy
    • 1
  1. 1.National Jewish Center for Immunology and Respiratory MedicineDenverUSA

Personalised recommendations