On the maximum charge state and proton transfer reactivity of peptide and protein ions formed by electrospray ionization

  • Paul D. Schnier
  • Deborah S. Gross
  • Evan R. Williams
Articles

Abstract

A relatively simple model for calculation of the energetics of gas-phase proton transfer reactions and the maximum charge state of multiply protonated ions formed by electrospray ionization is presented. This model is based on estimates of the intrinsic proton transfer reactivity of sites of protonation and point charge Coulomb interactions. From this model, apparent gas-phase basicities (GBapp) of multiply protonated ions are calculated. Comparison of this value to the gas-phase basicity of the solvent from which an ion is formed enables a maximum charge state to be calculated. For 13 commonly electrosprayed proteins, our calculated maximum charge states are within an average of 6% of the experimental values reported in the literature. This indicates that the maximum charge state for proteins is determined by their gas-phase reactivity. Similar results are observed for peptides with many basic residues. For peptides with few basic residues, we find that the maximum charge state is better correlated to the charge state in solution. For low charge state ions, we find that the most basic sites Arg, Lys, and His are preferentially protonated. A significant fraction of the less basic residues Pro, Trp, and Gln are protonated in high charge state ions. The calculated GBapp of individual protonation sites varies dramatically in the high charge state ions. From these values, we calculate a reduced cross section for proton transfer reactivity that is significantly lower than the Langevin collision frequency when the GBapp of the ion is approximately equal to the GB of the neutral base.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fenn, J. B.; Mann, M.; Meng, C. K.; Whitehouse, C. M. Science 1989, 246, 64–71.CrossRefGoogle Scholar
  2. 2.
    Smith, R. D.; Loo, J. A.; Ogorzalek Loo, R. R.; Busman, M.; Udseth, H. R. Mass Spectrom. Rev. 1991, 10, 359–452.CrossRefGoogle Scholar
  3. 3.
    Beu, S. C.; Senko, M. W.; Quinn, J. P.; McLafferty, F. W. J. Am. Soc. Mass Spectrom. 1993, 4, 190–192.CrossRefGoogle Scholar
  4. 4.
    Nohmi, T.; Fenn, J. B. J. Am. Chem. Soc. 1992, 114, 3241–3246.CrossRefGoogle Scholar
  5. 5.
    Fenn, J. B. J. Am. Soc. Mass Spectrom. 1993, 4, 524–535.CrossRefGoogle Scholar
  6. 6.
    Dole, M.; Mach, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. P.; Alice, M. B. J. Chem. Phys. 1968, 49, 2240–2249.CrossRefGoogle Scholar
  7. 7.
    Schmelzeisen-Redecker, G.; Bütfering, L.; Röllgen, F. W. Int. J. Mass Spectrom. Ion Processes 1989, 90, 139–150.CrossRefGoogle Scholar
  8. 8.
    Iribarne, J. V.; Thomson, B. A. J. Chem. Phys. 1976, 64, 2287–2294.CrossRefGoogle Scholar
  9. 9.
    Kebarle, P.; Tang, L. Anal. Chem. 1993, 65, 972A-986A.CrossRefGoogle Scholar
  10. 10.
    Covey, T. R.; Bonner, R. F.; Shushan, B. I.; Henion, J. Rapid Commun. Mass Spectrom. 1988, 2, 249–256.CrossRefGoogle Scholar
  11. 11.
    Chowdhury, S. K.; Katta, V.; Chait, B. T. J. Am. Chem. Soc. 1990, 112, 9012–9013.CrossRefGoogle Scholar
  12. 12.
    Mirza, U.; Cohen, S.; Chait, B. T. Anal. Chem. 1993, 65, 1–6.CrossRefGoogle Scholar
  13. 13.
    Loo, J. A.; Edmonds, C. G.; Udseth, H. R.; Smith, R. D. Anal. Chem. 1990, 62, 693–698.CrossRefGoogle Scholar
  14. 14.
    Loo, J. A.; Ogorzalek Loo, R. R.; Udseth, H. R.; Edmonds, C. G.; Smith, R. D. Rapid Commun. Mass Spectrom. 1991, 5, 101–105.CrossRefGoogle Scholar
  15. 15.
    Guevremont, R.; Siu, K. W. M.; LeBlanc, J. C. Y.; Berman, S. S. J. Am. Soc. Mass Spectrom. 1992, 3, 216–224.CrossRefGoogle Scholar
  16. 16.
    LeBlanc, J. C. Y.; Siu, K. M.; Guevremont, R. Anal. Chem. 1994, 66, 3289–3296.CrossRefGoogle Scholar
  17. 17.
    Kelly, M. A.; Vestling, M. M.; Fenselau, C. C.; Smith, P. B. Org. Mass Spectrom. 1992, 27, 1143–1147.CrossRefGoogle Scholar
  18. 18.
    Ashton, D. S.; Beddell, C. R.; Cooper, D. J.; Green, B. N.; Oliver, R. W. A. Org. Mass Spectrom. 1993, 28, 721–728.CrossRefGoogle Scholar
  19. 19.
    Tang, L.; Kebarle, P. Anal. Chem. 1993, 65, 3654–3666.CrossRefGoogle Scholar
  20. 20.
    LeBlanc, J. C. Y.; Wang, J.; Guevremont, R.; Siu, K. W. M. Org. Mass Spectrom. 1994, 29, 587–593.CrossRefGoogle Scholar
  21. 21.
    Wang, G.; Cole, R. B. Org. Mass Spectrom. 1994, 29, 419–427.CrossRefGoogle Scholar
  22. 22.
    Ogorzalek Loo, R. R.; Smith, R. D. J. Mass Spectrom. 1995, 30, 339–347.CrossRefGoogle Scholar
  23. 23.
    Gulcicek, E. E.; Shen, S.; Boyle, J. D.; Whitehouse, C. M.; Harrison, D. H.; Moore, P. B.; Proceedings of the 39th ASMS Conference on Mass Spectrometry and Allied Topics Nashville, TN, 1991; pp 1245–1246.Google Scholar
  24. 24.
    McLuckey, S. A.; Van Berkel, G. J.; Glish, G. L. J. Am. Chem. Soc. 1990, 112, 5668–5670.CrossRefGoogle Scholar
  25. 25.
    Cassady, C. J.; Wronka, J.; Laukien, F. H. Rapid Commun. Mass Spectrom. 1994, 8, 394–400.CrossRefGoogle Scholar
  26. 26.
    Ogorzalek Loo, R. R.; Smith, R. D. J. Am. Soc. Mass Spectrom. 1994, 5, 207–220.CrossRefGoogle Scholar
  27. 27.
    Ogorzalek Loo, R. R.; Winger, B. E.; Smith, R. D. J. Am. Soc. Mass Spectrom. 1994, 5, 1064–1071.CrossRefGoogle Scholar
  28. 28.
    Gross, D. S.; Williams, E. R. J. Am. Chem. Soc. 1995, 117, 883–890.CrossRefGoogle Scholar
  29. 29.
    Gross, D. S.; Rodriguez-Cruz, S. E.; Bock, S.; Williams, E. R. J. Phys. Chem. 1995, 99, 4034–4038.CrossRefGoogle Scholar
  30. 30.
    Schnier, P. D.; Gross, D. S.; Williams, E. R. J. Am. Chem. Soc. 1995, 117, 6747–6757.CrossRefGoogle Scholar
  31. 31.
    Williams, E. R.; Gross, D. S.; Schnier, P. D.; Rodriguez-Cruz, S. E.; Fagerquist, C. K. Proceedings of the 43rd ASMS Conference on Mass Spectrometry and Allied Topics; Atlanta, GA, May 21–26, 1995; TOC 11:50.Google Scholar
  32. 32.
    Aue, D. H.; Bowers, M. T. In Gas-Phase Ion Chemistry, Vol. 2; Bowers,, M. T., Ed.; New York: Academic Press, 1979; Chap. 9.Google Scholar
  33. 33.
    DeFrees, D. J.; McIver, R. T.; Hehre, W. J. J. Am. Chem. Soc. 198, 102, 3334–3338.Google Scholar
  34. 34.
    McLuckey, S. A.; Cameron, D.; Cooks, R. G. J. Am. Chem. Soc. 1981, 103, 1313–1317.CrossRefGoogle Scholar
  35. 35.
    Javahery, G.; Petrie, S.; Wincel, H.; Wang, J.; Bohme, D. K. J. Am. Chem. Soc. 1993, 115, 6295–6301.CrossRefGoogle Scholar
  36. 36.
    Bursey, M. M.; Pederson, L. G. Org. Mass Spectrom. 1992, 27, 974–975.CrossRefGoogle Scholar
  37. 37.
    Petrie, S.; Javahery, G.; Wincel, H.; Wang, J.; Bohme, D. K. J. Am. Chem. Soc. 1993, 115, 6290–6294.CrossRefGoogle Scholar
  38. 38.
    Suckau, D.; Shi, Y Beu, S. C.; Senko, M. W.; Quinn, J. P.; Wampler, F. W.; McLafferty, F. W. Proc. Nat’l. Acad. Sci. U. S. A. 1993, 90, 790–793.CrossRefGoogle Scholar
  39. 39.
    Wood, T. D.; Chorush, R. A.; Wampler, F. M.; Little, D. P.; O’Connor, P. B.; McLafferty, F. W. Proc. Nat’l. Acad. Sci. U. S. A. 1995, 92, 2451–2454.CrossRefGoogle Scholar
  40. 40.
    Creighton, T. E. Proteins, 2nd ed.; New York: W. H. Freeman and Co., 1993.Google Scholar
  41. 41.
    Rockwood, A. L.; Busman, M.; Smith, R. D. Int. J. Mass Spectrom. Ion Processes 1991, 111, 103–129.CrossRefGoogle Scholar
  42. 42.
    Wu, J.; Lebrilla, C. B. J. Am. Chem. Soc. 1993, 115, 3270–3275.CrossRefGoogle Scholar
  43. 43.
    Wu, J.; Lebrilla, C. B. J. Am. Soc. Mass Spectrom. 1995, 6, 91–101.CrossRefGoogle Scholar
  44. 44.
    Wu, Z.; Fenselau, C. J. Am. Soc. Mass Spectrom. 1992, 3, 863–866.CrossRefGoogle Scholar
  45. 45.
    Gorman, G. S.; Amster, I. J. J. Am. Chem. Soc. 1993, 115, 5729–5735.CrossRefGoogle Scholar
  46. 46.
    Wu, Z.; Fenselau, C. Rapid Commun. Mass Spectrom. 1992, 6, 403–405.CrossRefGoogle Scholar
  47. 47.
    Wu, Z.; Fenselau, C. Rapid Commun. Mass Spectrom. 1994, 8, 777–780.CrossRefGoogle Scholar
  48. 48.
    Lias, S. G.; Liebman, J. F.; Levin, R. D. J. Phys. Chem. Ref. Data 1984, 13, 695–808.CrossRefGoogle Scholar
  49. 49.
    Wu, Z.; Fenselau, C. Tetrahedron 1993, 49, 9197–9206.CrossRefGoogle Scholar
  50. 50.
    Katta, V.; Chait, B. T. Rapid Commun. Mass Spectrom. 1991, 5, 214–217.CrossRefGoogle Scholar
  51. 51.
    Kirkpatrick, C. D.; Gelatt, C. D.; Vecchi, M. P. Science 1983, 220, 671–680.CrossRefGoogle Scholar
  52. 52.
    Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T. Numerical Recipes in Pascal; Cambridge, U.K.: Cambridge University Press, 1989.Google Scholar
  53. 53.
    Wan Abdullah, W. A. T. J. Comp. Phys. 1994, 110, 320–326.CrossRefGoogle Scholar
  54. 54.
    Lide, D. R., Ed. CRC Handbook of Chemistry and Physics; Boca Raton, FL: CRC Press, 1993.Google Scholar
  55. 55.
    Chernushevich, I. V.; Ens, W.; Standing, K. G. Proceedings of the 43rd ASMS Conference on Mass Spectrometry and Allied Topics; Atlanta, GA, May 21–26, 1995; FOD 10:30.Google Scholar
  56. 56.
    Loo, J. A.; Ogorzalek Loo, R. R.; Udseth, H. R.; Fulton, J. L.; Smith, R. D. Rapid Commun. Mass Spectrom. 1992, 6, 159–165.CrossRefGoogle Scholar
  57. 57.
    Buck, M.; Radford, S. E.; Dobson, C. M. Biochemistry 1993, 32, 669–678.CrossRefGoogle Scholar
  58. 58.
    Schwarz, F. P.; Kirchhoff, W. H. Thermochim. Acta 1988, 128, 267–275.CrossRefGoogle Scholar
  59. 59.
    Schwarz, F. P. Thermochim. Acta 1989, 147, 71–91.CrossRefGoogle Scholar
  60. 60.
    Covey, T.; Douglas, D. J. J. Am. Soc. Mass Spectrom. 1993, 4, 616–623.CrossRefGoogle Scholar
  61. 61.
    Cox, K. A.; Julian, R. K.; Cooks, R. G.; Kaiser, R. E. J. Am. Soc. Mass Spectrom. 1994, 5, 127–136.CrossRefGoogle Scholar
  62. 62.
    Ikonomou, M. G.; Kebarle, P. Int. J. Mass Spectrom. Ion Processes 1992, 117, 283–298.CrossRefGoogle Scholar
  63. 63.
    Langevin, P. Ann. Chim. Phys. 1905, 5, 245.Google Scholar

Copyright information

© American Society for Mass Spectrometry 1995

Authors and Affiliations

  • Paul D. Schnier
    • 1
  • Deborah S. Gross
    • 1
  • Evan R. Williams
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaBerkeleyU.S.A.

Personalised recommendations