Chemical substructure identification by mass spectral library searching

  • Stephen E. Stein
Article

Abstract

A library-search procedure that identifies structural features of an unknown compound from its electron-ionization mass spectrum is described. Like other methods, this procedure first retrieves library compounds whose spectra are most similar to the spectrum of an unknown compound. It then deduces structural features of the unknown compound from the chemical structures of the retrievals. Unlike other methods, the significance of each retrieved spectrum is weighted according to its similarity to the spectrum of the unknown compound. Also, a “peaks-in-common” screening step serves to reduce search times and an optimized dot product function provides the match factor. If the molecular weight of the unknown compound is provided, the identification of certain substructures can be improved by including “neutral loss” peaks. Correlations between the presence of a substructure in a test compound and its presence among library retrievals were derived from the results of searching the NIST/EPA/NIH reference library with a 7891 compound test set. These correlations allow the estimation of probabilities of substructure occurrence and absence in an unknown compound from the results of a library search. This method may be viewed as an optimization of the “K-nearest neighbor” method of Isenhour and co-workers, with improvements that arise from spectrum screening, peak scaling, an optimal distance measure, a relative-distance weighting scheme, and a larger reference library.

References

  1. 1.
    Warr, W. A. Anal. Chem. 1993, 65, 1045a-1050a.CrossRefGoogle Scholar
  2. 2.
    Martinsen, D. P.; Song, B.-H. Mass Spectrom. Rev. 1985, 4, 461–490.CrossRefGoogle Scholar
  3. 3.
    Stein, S.E.; Scott, D. R. J. Am. Soc. Mass Spectrom. 1994, 5, 859–866.CrossRefGoogle Scholar
  4. 4.
    Zurcher, M.; Clerc, J. T.; Farkas, M.; Pretsch, E. Anal. Chim. Acta 1988, 206, 161–172.CrossRefGoogle Scholar
  5. 5.
    Warr, W. A. Anal. Chem. 1993, 65, 1087a-1095a.CrossRefGoogle Scholar
  6. 6.
    Kowalski, B. R.; Bender, C. F. Anal. Chem. 1972, 44, 1405–1411.CrossRefGoogle Scholar
  7. 7.
    Justice, J. B.; Isenhour, T. L. Anal. Chem. 1974, 46, 223–226.CrossRefGoogle Scholar
  8. 8.
    Lowry, S. R.; Isenhour, T. L.; Justice, J. B., Jr.; McLafferty, F. W.; Dayringer, H. E.; Venkataraghavan, R. J. Anal. Chem. 1977, 49, 1720–1722.CrossRefGoogle Scholar
  9. 9.
    Damen, H.; Henneberg, D.; Weimann, B. Anal. Chim. Acta 1978, 103, 289–302.CrossRefGoogle Scholar
  10. 10.
    Domokos, L.; Henneberg, D.; Weimann, B. Anal. Chim. Acta 1984, 165, 61–74.CrossRefGoogle Scholar
  11. 11.
    Kwok, K.-S.; Venkataraghaven, R.; McLafferty, F. W. J. Am. Chem. Soc. 1973, 95, 4185–4194.CrossRefGoogle Scholar
  12. 12.
    Dayringer, H. E.; Pesyna, G. M.; Venkataraghavan, R.; McLafferty, F. W. Org. Mass Spectrom. 1976, 33, 529–542.CrossRefGoogle Scholar
  13. 13.
    Haraki, K. S.; Venkataraghavan, R.; McLafferty, F. W. Anal. Chem. 1981, 53, 386–392.CrossRefGoogle Scholar
  14. 14.
    Henneberg, D.; Weimann, B.; Zalfen, U. Poster Presentation at the 12th International Conference on Mass Spectrometry Amsterdam 1991.Google Scholar
  15. 15.(a)
    Munk, M. E.; Christie, B. D. Anal. Chim. Acta 1989, 216, 57–78.CrossRefGoogle Scholar
  16. 15.(b)
    Christie, B. D.; Munk, M. E. J. Amer. Chem. Soc. 1991, 113, 3750–3757.CrossRefGoogle Scholar
  17. 16.
    Funatsu, K.; Miyabayashi, N.; Sasaki, S. J. Chem. Inf. Comput. Sci. 1988, 28, 18–28.Google Scholar
  18. 17.
    Gasteiger, J.; Hanebeck, W.; Schulz, K.-P. J. Chem. Inf. Comput. Sci. 1992, 32, 264–271.Google Scholar
  19. 18.(a)
    Dayringer, H. E. Ph. D. Thesis, Cornell University, 1976;Google Scholar
  20. 18.(b)
    Haraki, K. S. Ph. D. Thesis, Cornell University, 1980.Google Scholar
  21. 19.
    Curry, B.; Rumelhart, D. E. Tetrahedron Comput. Methodol. 1990, 3, 213–237.CrossRefGoogle Scholar
  22. 20.
    Werther, W.; Lohninger, H.; Stancl, F.; Varmuza, K. Chemom. Intell. Lab. Syst. 1994, 22, 63–76.CrossRefGoogle Scholar
  23. 21.
    NIST/EPA/NIH Mass Spectral Database with Selected Replicate Spectra; Standard Reference Database No. 1A; NIST: Gaithersburg, MD, 1992 (PC Version 4.5).Google Scholar
  24. 22.
    Sokolow, S.; Karnofsky, J.; Gustafson, P. The Finnigan Library Search Program, Finnigan Application Report 2; March, 1978.Google Scholar
  25. 23.
    Dayringer, H. E.; McLafferty, F. W. Org. Mass Spectrom. 1976, 11, 543–551.CrossRefGoogle Scholar
  26. 24.
    McLafferty, F. W. Anal. Chem. 1977, 49, 1441–1443.CrossRefGoogle Scholar
  27. 25.
    Curry, B. in Computer-Enhanced Analytical Spectroscopy; Plenum: New York, 1990, pp 183–209.Google Scholar
  28. 26.
    Stein, S. E. J. Am. Soc. Mass Spectrom. 1994, 5, 316–323.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 1995

Authors and Affiliations

  • Stephen E. Stein
    • 1
  1. 1.NIST Mass Spectrometry Data CenterNational Institute of Standards and TechnologyGaithersburg

Personalised recommendations