Comparison of charged derivatives for high energy collision-induced dissociation tandem mass spectrometry

  • Joseph Zaia
  • Klaus Biemann


Fixed-charge derivatives have been used to direct the fragmentation pattern of high energy collision-induced dissociation tandem mass spectra for several years. It has been noted that a fixed-charge placed at a terminus of a peptide will simplify the pattern of fragment ions that are produced in collision-induced dissociation. Trimethylammoniumacetyl, dimethyloctylammoniumacetyl, and triphenylphosphoniumethyl derivatives have been cited in the literature for this purpose and many other structures are possible. This work compares the cited derivatives as well as some new structures. The criteria used include the ease of synthesis and purification of the derivatized peptide and the effects of the derivative on the peptide sequence fragment ion yield and ionization efficiency. The trimethylammoniumacetyl derivative is concluded to be the most practical for general use, whereas the dimethyloctylammoniumacetyl derivative is found to be desirable for use with hydrophilic peptides.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Johnson, R. S.; Martin, S. A.; Biemann, K. Inf. J. Mnss Syectrom. Ion Processes 1988, 86, 137–154.CrossRefGoogle Scholar
  2. 2.
    Vath, J. E.; Biemann, K. Int. J. Mnss. Spectrom. Ion Processes 1990, 100, 287–299.CrossRefGoogle Scholar
  3. 3.
    Tomer, K. B.; Crow, F. W.; Gross, M. L. J. Am. Chem. Soc. 1983, 705, 5487–5488.CrossRefGoogle Scholar
  4. 4.
    Adams, J. Mass Spcctrom. Rev. 1990, 9, 141–186.CrossRefGoogle Scholar
  5. 5.
    Johnson, R. S.; Martin, S. A.; Biemann, K.; Stults, J. T.; Watson, J. T. Anal. Chem. 1987, 59, 2621–2625.CrossRefGoogle Scholar
  6. 6.
    Zaia, J. Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA, 1993.Google Scholar
  7. 7.
    Wetzel, R.; Halualani, R.; Stults, J. T.; Quan, C. Bioconj. Chem. 1990, 2, 114–122.CrossRefGoogle Scholar
  8. 8.
    Stults, J. T. Proceedings of the 40th ASMS Conference on Mass Spectrometry and Allied Topics; 1992, pp. 1815–1816.Google Scholar
  9. 9.
    Kidwell, D. A.; Ross, M. M.; Colton, R. J. J. Am. Chem. Sot. 1984, 106, 2219–2220.CrossRefGoogle Scholar
  10. 10.
    Wagner, D. S.; Salari, A.; Gage, D. A.; Leykam, J.; Fetter, J.; Hollingsworth, R.; Watson, J. T. Biol. Mass Spectrom. 1991, 20, 419–425.CrossRefGoogle Scholar
  11. 11.
    Stults, J. T.; Lai, J.; McCune, S.; Wetzel, R. Anal. Chem. 1993, 65, 1703–1708.CrossRefGoogle Scholar
  12. 12.
    O’Leary, M. H.; Samberg, G. A. J. Am. Chem. Sot. 1971, 93, 3530–3532.CrossRefGoogle Scholar
  13. 13.
    Sato, K.; Asada, R.; Ishihara, M.; Kunihiro, F.; Kammei, Y.; Kubota, E.; Costello, C. E.; Martin, S. A.; Scoble, H.; Biemann, K. Anal. Chem. 1987, 59, 1652–1659.CrossRefGoogle Scholar
  14. 14.
    Zaia, J.; Biemann, K. Proceedings of the 4Zsf ASMS Conference on Mass Spectrometry and Allied Topics; 1993, pp. 358a–358b.Google Scholar
  15. 15.
    Downard, K. M.; Biemann, K. J. Am. Sot. Mass Spectrom. 1993, 4, 874–881.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 1995

Authors and Affiliations

  • Joseph Zaia
    • 1
  • Klaus Biemann
    • 1
  1. 1.Department of Chemistry, Room 18-587Massachusetts Institute of TechnologyCambridge

Personalised recommendations