Interaction of angiotensin peptides and zinc metal ions probed by electrospray ionization mass spectrometry

  • Joseph A. Loo
  • Peifeng Hu
  • Richard D. Smith
Article

Abstract

Electrospray ionization-tandem mass spectrometry experiments were used to provide evidence regarding the sites of interactions between zinc metal ions and angiotensin peptides. The electrospray ionization mass spectra of histidine-containing human angiotensin II (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe) and angiotensin I (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu) in the presence of zinc show abundant multiply charged ions for the zinc-attached peptide [M + aZn2+ +(c − 2a)H+]c+, where a = 1, 2 and c is charge. From collisionally activated dissociation experiments, with both low energy (triple quadrupole mass spectrometry) and high energy collisions (linked scan at constant B/E with a double focusing instrument) of the [M + Zn]2+ and [M + Zn + H]3+ ions for angiotensin II, a [b6 + Zn]2+ species is produced as the most abundant product ion, suggesting that the zinc interaction site is in the vicinity of the His6 residue. Additionally, tandem mass spectra from the zinc-attached ions for angiotensin I show abundant [b6 + Zn]2+ and [b9 + Zn]2+ products, providing evidence that both His6 and His9 are involved in zinc coordination.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Glusker, J. P. In Advances in Protein Chemistry, Vol. 42; Anfinsen, C. B.; Edsall, J. T.; Eisenberg, D. S.; Richards, F. M. Ed.; Academic: San Diego, CA, 1991.Google Scholar
  2. 2.
    Riordan, J. F.; Vallee, B. L., Eds. Metatiobiochemistry, Part C, Spectroscopic and Physical Methods for Probing Metal 1011 Environments in Mctalloenzymes and Metalloproteins, Vol. 226; Academic: San Diego, CA, 1993.Google Scholar
  3. 3.
    Riordan, J. F.; Vallee, B. L., Eds. Metallobiochemistry, Part D, Physical and Spectroscopic Methods for Probing Metal Ion Environments in Metalloproteins, Vol. 227; Academic: San Diego, CA, 1993.Google Scholar
  4. 4.
    Bertini, L.; Turano, P.; Villa, A. J. Chem. Rev. 1993, 93, 2833–2932.CrossRefGoogle Scholar
  5. 5.
    Dent, A. J.; Beyersmann, C.; Block, C.; Hasnain, S. S. Biochemistry 1990, 29, 7822–7828.CrossRefGoogle Scholar
  6. 6.
    Eggers-Borkenstein, P.; Priggemeyer, S.; Krebs, B.; Henkel, G.; Simonis, U.; Pettifer, R. F.; Nolting, H.-F.; Hermes, C. Eur. J. Biochem. 1989, 186, 667–675.CrossRefGoogle Scholar
  7. 7.
    Hubbard, S. R.; Bishop, W. R.; Kirschmeier, P.; George, S. J.; Cramer, S. P.; Henrickson, W. A. Science 1991, 254, 1776–1779.CrossRefGoogle Scholar
  8. 8.
    Krebs, J. F.; Fierke, C. A. Biochemistry 1991, 3D, 9154–9160.Google Scholar
  9. 9.
    Vallee, B. L.; Auld, D. S. Proc. Natl. Acad. Sci. USA 1990, 87, 220–224.CrossRefGoogle Scholar
  10. 10.
    Mallis, L. M.; Russell, D. H. Anal. Chem. 1986, 58, 1076–1080.CrossRefGoogle Scholar
  11. 11.
    Russell, D. H.; McGlohun, E. S.; Mallis, L. M. Anal. Chem. 1988, 60, 1818–1824.CrossRefGoogle Scholar
  12. 12.
    Kulik, W.; Heerrna, W.; Terlouw, J. K. Rapid Commun. Mass Spectrom. 1989, 3, 276–278.CrossRefGoogle Scholar
  13. 13.
    Tomer, K. B.; Deterding, L. J.; Cuenat, C. Biol. Mass Spectrom. 1991, 20, 121–129.CrossRefGoogle Scholar
  14. 14.
    Grese, R. P.; Cerny, R. L.;Gross, M. L. J. Am Chem. Soc. 1989, 111, 2835–2842.CrossRefGoogle Scholar
  15. 15.
    Teesch, L.M.; Adams, J. J. Am. Chem. Soc. 1991, 113, 812–820.CrossRefGoogle Scholar
  16. 16.
    Teesch, L. M.; Orlando, R. C.; Adams, J. J. Am. Chem. Soc. 1991, 113, 3668–3675.CrossRefGoogle Scholar
  17. 17.
    Tang, X.-J.; Thibault, P.; Boyd, R. K. Org. Mass Specirom. 1993, 28, 1047–1052.CrossRefGoogle Scholar
  18. 18.
    Hu, P. F.; Gross, M. L. J. Am. Chem. Soc. 1992, 114, 9153–9160.CrossRefGoogle Scholar
  19. 19.
    Hu, P. F.; Gross, M. L. J. Am. Chem. Soc 1992, 114, 9161–9169.CrossRefGoogle Scholar
  20. 20.
    Teesch, L. M.; Adams, J. J. Am. Chem. Soc. 1990, 112, 4110- 4120.CrossRefGoogle Scholar
  21. 21.
    Zhao, H.; Reiter, A.; Teesch, L. M.; Adams, J. J. Am. Chem. Soc. 1993, 115, 2854–2863.CrossRefGoogle Scholar
  22. 22.
    Hu, P. P.; Gross. M. L., Am. Chem. Soc. 1993, 115, 8821–8828.CrossRefGoogle Scholar
  23. 23.
    Meng, C. K.; Mann, M.; Penn, J. B. J. Phys. D 1988, 10, 361–368.CrossRefGoogle Scholar
  24. 24.
    Smith, R. D.; Loo, J. A.; Ogorzalek Loo, R. R.; Busman, M.; Udseth, H. R. Mass Spectrom. Rev. 1991, 10, 359–451.CrossRefGoogle Scholar
  25. 25.
    Loo, J. A.; Edmonds, C. G.; Smith, R. D. Science 1990, 248, 201–204.CrossRefGoogle Scholar
  26. 26.
    Hutchens, T. W.; Allen, M. H. Rapid Commun. Mass Spectrom. 1992, 6, 469–473.CrossRefGoogle Scholar
  27. 27.
    Allen, M. H.; Hutchens, T. W. Rapid Commun. Mass Spectrom. 1992, 6, 308–312.CrossRefGoogle Scholar
  28. 28.
    Hutchens, T. W.; Nelson, R. W.; Allen, M. H.; Li. C. M.; Yip, T. T. BioI. Mass Spectrom. 1992, 21, 151–159.CrossRefGoogle Scholar
  29. 29.
    Yu, X. L.; Wojciechowsk, L M.; Fenselau, D. Anal. Chem. 65, 1355–1359.Google Scholar
  30. 30.
    Hu, P. F.; Gross, M. L. J. Am. Soc. Mass Spectrom, 1994, 5, 137–143.CrossRefGoogle Scholar
  31. 31.
    Sigel, H.; Martin, R. M. Chem. Rev. 1982, 82, 385–426.CrossRefGoogle Scholar
  32. 32.
    Cunnane, S. C. Zinc: Clinicaland Biochemical Significance; CRC Press: Boca Raton, FL, 1988.Google Scholar
  33. 33.
    Christianson, D. W. In Adnances in ProteinChemistry; Anfinsen, C. B.; Edsall, J. T.; Eisenberg D. S.; Richards, F. M. Eds.; Academic: San Diego, CA, 1991; pp 281–355.Google Scholar
  34. 34.
    Vallee, B. L.; Auld, D. S. Ace. Chem. Res. 1993, 26, 543–551.CrossRefGoogle Scholar
  35. 35.
    Smith, R. D.; Loo, J. A.; Barinaga, C. J.; Edmonds, C. G.; Udseth, H. R. J. Am. Soc, Mass Spectrum. 1990, 1, 53–65.CrossRefGoogle Scholar
  36. 36.
    Ikonornou, M. G.; Blades, A. T.; Kebarle, P. J. Am. Soc. Mass Spectrom. 1991, 2, 492–496.CrossRefGoogle Scholar
  37. 37.
    Loo, J. A.; Giordani, A. G.; Muenster, H. Rapid. Commun. Mass Spectrom. 1993, 7, 186–189.CrossRefGoogle Scholar
  38. 38.
    Biemann, K. Biomed. Environ. Mass Spectrom. 1988, 16, 99–111.CrossRefGoogle Scholar
  39. 39.
    Loo, J. A.; Edmonds, C. G.; Smith, R. D. Anal. Chem. 1993, 28, 1640–1649.Google Scholar
  40. 40.
    Loo, J. A.; Ogorzalek Loo, R. R.; Andrews, P. C. Org. Mass Spectrom. 1993, 28, 1640–1649.CrossRefGoogle Scholar
  41. 41.
    Arnold, A. P.; Stanley, D. M.; Collins, J. G. FEBS Lett. 1991, 289, 96–98.CrossRefGoogle Scholar
  42. 42.
    Decock-Le Reverend, B.; Liman, F.; Livera, C.; Pettit L. D.; Pyburn, S.; Kozlowski, H. J. Chem. Soc, Dalton Trans. 1988, 887–894.Google Scholar
  43. 43.
    Pettit, L. D.; Pyburn, S.; Kozlowski, H.; Decock-Lekeverend, B.; Liman, F. J. Chcm. Soc. Dalton Trans. 1989, 1741–1475.Google Scholar
  44. 44.
    Hu, Z.; Macfarlane, R. D. In 39th ASMS Conference on Mass Spectrometry and Allied Topics; Nashville, TN, 1991; pp 481 –482.Google Scholar
  45. 45.
    Hu, Z.; Macfarlane, R. D. In 40th ASMS Conference on Mass Spectrometry and Allied Topics; Washington, DC, 1992; pp 580–581.Google Scholar

Copyright information

© American Society for Mass Spectrometry 1994

Authors and Affiliations

  • Joseph A. Loo
    • 1
  • Peifeng Hu
    • 2
  • Richard D. Smith
    • 2
  1. 1.Division of Warner-Lambert CompanyAnn ArborUSA
  2. 2.Chemical Sciences DepartmentPacific Northwest LaboratoryRichlandUSA

Personalised recommendations