Chemical modification of fluorinated self-assembled monolayer surfaces by low energy reactive ion bombardment

  • T. Pradeep
  • B. Feng
  • T. Ast
  • J. S. Patrick
  • R. G. Cooks
  • S. J. Pachuta


Reactive collisions of low energy (<100-eV) mass-selected ions are used to chemically modify fluorinated self-assembled monolayer surfaces comprised of alkanethiolate chains CF3(CF2)11(CH2)2S— bound to Au. Typical experiments were done by using 1-nA/cm2 beams and submonolayer doses of reactant ions. Characterization of the modified surface was achieved by in situ chemical sputtering (60-eV Xe) and by independent high mass resolution time-of-flight-secondary ionization mass spectrometry (TOF-SIMS) (15–25-keV, Ga+) experiments. Treatment with Si35C14 produced a surface from which Xe+ sputtering liberated CF235C1+ ions, which suggested Cl-for-F halogen exchange at the surface. Isotopic labeling studies that used Si35Cl237Cl2; and experiments with bromine-containing and iodine-containing projectiles, confirmed this reaction. High mass resolution TOF-SIMS spectra, as well as high spatial resolution images, provided further evidence as to the existence of halogen-exchanged species at the bombarded surface. Analogous Cl-for-F halogen substitution was observed in a model gas-phase reaction. The ion-surface reaction is suggested to proceed through an intermediate fluoronium ion in which the projectile is bonded to the target molecule. The most significant conclusion of the study is that selective chemical modification of monolayer surfaces can be achieved by using reactive ion beams, which lead to new covalent bonds at the surface and in the scattered ions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rabalais, J. W.; Kasi, S. Science 1988, 239, 623–625.CrossRefGoogle Scholar
  2. 2.
    Smidt, F. A. CHEMTECH 1989, 19, 309–314.Google Scholar
  3. 3.
    Wilson, R. G.; Brewer, G. R. Ion Beams with Application to Ion Implantation; Wiley: New York, 1973.Google Scholar
  4. 4.
    Amirav, A.; Danon, A. Int. J. Mass Spectrom. Ion Processes 1990, 97, 107–113.CrossRefGoogle Scholar
  5. 5.
    Scoles, G., Ed. Atomic and Molecular Beam Methods; Oxford University Press: Oxford, 1988.Google Scholar
  6. 6.
    Coburn, J. W. Pure Appl. Chem. 1992, 64, 709–713.CrossRefGoogle Scholar
  7. 7.
    Lou, J.-C.; Oldham, W. G.; Kawayoshi, H.; Ling, P. J. Appl. Phys. 1992, 71, 3225–3230.CrossRefGoogle Scholar
  8. 8.
    Kasi, S. R.; Kang, H.; Sass, C. S.; Rabalais, J. W. Surf. Sci. Rep. 1989, 10, 1–104.CrossRefGoogle Scholar
  9. 9.
    Ceyer, S. T. Science 1990, 249, 133–139.CrossRefGoogle Scholar
  10. 10.
    Fenn, J. B. Pure Appl. Phys. 1982, 43(5), 349–378.Google Scholar
  11. 11.
    Martin, J. S.; Greeley, J. N.; Morris, J. R.; Jacobs, D. C. J. Chem. Phys. 1992, 97, 9476–9479.CrossRefGoogle Scholar
  12. 12.
    Akazawa, H.; Muruta, Y. J. Chem. Phys. 1990, 92, 5560–5568.Google Scholar
  13. 13.
    Willerding, B.; Heiland, W.; Snowdon, K. J. Phys. Rev. Left. 1984, 53, 2031–2034.CrossRefGoogle Scholar
  14. 14.
    Dekrey, M. J.; Mabud, Md. A.; Cooks, R. G.; Syka, J. E. P. Int. J. Mass Spectrom. Ion Processes 1985, 67, 295–303.CrossRefGoogle Scholar
  15. 15.
    Lammert, S. A.; Cooks, R. G. J. Am. Soc. Mass Spectrom. 1991, 2, 487–491.CrossRefGoogle Scholar
  16. 16.
    Riederer, D. E., Jr.; Miller, S. A.; Ast, T.; Cooks, R. G. J. Am. Soc. Mass Spectrom. 1993, 4, 938–942.CrossRefGoogle Scholar
  17. 17.
    Wysocki, V. H.; Ding, J.-M.; Jones, J. L.; Callahan, J. H.; King, F. L. J. Am. Soc. Mass Spectrom. 1992, 3, 27–32.CrossRefGoogle Scholar
  18. 18.
    Li, G.; Duhr, A.; Wollnik, H. J. Am. Soc. Mass Spectrom. 1992, 3, 487–492.CrossRefGoogle Scholar
  19. 19.
    Le Meillour, S.; Cole, R.; Clairet, F.; Fournier, F.; Tabet, J. C.; Blasco, T.; Beaugrand, C.; Devant, G. Adv. Mass. Spectrom. 1989, 11A, 236–237.Google Scholar
  20. 20.
    Williams, E. R.; Henry, K. D.; McLafferty, F. W.; Shabanowitz, J.; Hunt, D. F. J. Am. Soc. Mass Spectrom. 1990, 1, 413–416.CrossRefGoogle Scholar
  21. 21.
    Wright, A. D.; Despeyroux, D.; Jennings, K. R.; Evans, S.; Riddoch, A. Org. Mass. Spectrom. 1992, 27, 525–526.CrossRefGoogle Scholar
  22. 22.
    Ijames, C. F.; Wilkins, C. L. Anal. Chem. 1990, 62, 1295–1299.CrossRefGoogle Scholar
  23. 23.
    Williams, E. R.; Jones, G. C., Jr.; Fang, L.; Zare, R. N.; Garrison, B. J.; Brenner, D. W. J. Am. Chem. Soc. 1992, 114, 3207–3210.CrossRefGoogle Scholar
  24. 24.
    Morris, M. R.; Riederer, D. E., Jr.; Winger, B. E.; Cooks, R. G., Ast, T.; Chidsey, C. E. D. Int. J. Mass Spectrom. Ion Processes 1992, 122, 181–217.CrossRefGoogle Scholar
  25. 25.
    Somogyi, A.; Kane, T. E.; Ding, J.-M.; Wysocki, V. H. J. Am. Chem. Soc. 1993, 115, 5275–5283.CrossRefGoogle Scholar
  26. 26.
    Wu, Q.; Hanley, L. J. Phys. Chem. 1993, 97, 2677–2685.CrossRefGoogle Scholar
  27. 27.
    Pradeep, T.; Riederer, D. E., Jr.; Hoke S. H., II; Ast, T.; Cooks, R. G.; Linford, M. R. J. Am. Chem. Soc. 1994, 116, 8658–8665.CrossRefGoogle Scholar
  28. 28.
    Pradeep, T.; Ast, T.; Cooks, R. G.; Feng, B. J. Phys. Chem. 1994, 98, 9301–9311.CrossRefGoogle Scholar
  29. 29.
    Chidsey, C. E. D.; Liu, G.-Y.; Rowntree, P.; Scoles, G. J. Chem. Phys. 1989, 91, 4421–4423.CrossRefGoogle Scholar
  30. 30.
    Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E. D. J. Am. Chem. Soc. 1987, 109, 3559–3568.CrossRefGoogle Scholar
  31. 31.
    Winger, B. E.; Laue, H.-J.; Horning, S. R.; Julian, R. K.; Lammert, S. A.; Riederer, D. E., Jr.; Cooks, R. G. Rev. Sci. lnstrum. 1992, 63, 5613–5625.CrossRefGoogle Scholar
  32. 32.
    Vincenti, M.; Cooks, R. G. Org. Mass Spectrom. 1988, 23, 317–326.CrossRefGoogle Scholar
  33. 33.
    Cooks, R. G.; Ast, T.; Mabud, Md. A. Int. J. Mass Spectrom. Ion Processes 1990, 100, 209–265.CrossRefGoogle Scholar
  34. 34.(a)
    Frisbie, C. D.; Wollman, E. W.; Martin, J. R.; Wrighton, M. S. J. Vac. Sci. Technol. A 1993, 11, 2368–2372.CrossRefGoogle Scholar
  35. 34.(b)
    Frisbie, C. D.; Martin, J. R.; Duff, R. R. Jr.; Wrighton, M. S. J. Am. Chem. Soc. 1992, 114, 7142–7145.CrossRefGoogle Scholar
  36. 35.
    Tarlov, M. J.; Newman, J. G. Langmuir 1992, 8, 1398–1405.CrossRefGoogle Scholar
  37. 36.
    Alves, C. A.; Porter, M. D. Langmuir 1993, 9, 3507–3512.CrossRefGoogle Scholar
  38. 37.
    Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. J. Chem. Phys. Ref. Data 1988, 17, Suppl. I.Google Scholar
  39. 38.
    Hernando, A., Ed. Nanomagnetism; Kluwer Academic: Boston, 1993.Google Scholar
  40. 39.
    Boyd, R. W. Nonlinear Optics; Academic: Boston, 1992.Google Scholar
  41. 40.
    Aviram, A. Molecular Electronics—Science and Technology; American Institute of Physics: New York, 1992.Google Scholar
  42. 41.
    Kuntz, I. D.; Meng, E. C.; Shoichet, B. K. Acc. Chem. Res. 1994, 27, 117–123.CrossRefGoogle Scholar
  43. 42.
    Rowe, G. K.; Creager, S. E. Langmuir 1991, 7, 2307–2312.CrossRefGoogle Scholar
  44. 43.
    Pradeep, T.; Riederer, D. E., Jr.; Ast, T.; Cooks, R. G. Rapid Commun. Mass Spechvm. 1993, 7, 711–713.CrossRefGoogle Scholar
  45. 44.
    Callahan, J. H.; Somogyi, A.; Wysocki, V. H. Rapid Commun. Mass Spectrom. 1993, 7, 693–699.CrossRefGoogle Scholar
  46. 45.
    Wainhaus, S. B.; Burroughs, J. A.; Wu, Q.; Hanley, L. Anal. Chem. 1994, 66, 1038–1043.CrossRefGoogle Scholar
  47. 46.
    Riederer, D. E., Jr.; Cooks, R. G.; Linford, M. R. Org. Mass Spectrom., in press.Google Scholar
  48. 47.
    Rabalais, J. W. Acc. Chem. Res. 1994, 27, 26–32.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 1995

Authors and Affiliations

  • T. Pradeep
    • 1
  • B. Feng
    • 1
  • T. Ast
    • 1
  • J. S. Patrick
    • 1
  • R. G. Cooks
    • 1
  • S. J. Pachuta
    • 3
  1. 1.Department of ChemistryPurdue UniversityWest Lafayette
  2. 2.Regional Sophisticated Instrumentation Center and Department of Chemistry Indian Institute of TechnologyMadrasIndia
  3. 3.3M Corporate Research Laboratories201-2S-16 3M CenterSt. PaulUSA

Personalised recommendations