Advertisement

High Efficiency Photo-Induced Dissociation of Precursor Ions in a Tandem Time-of-Flight Mass Spectrometer

  • M. A. Seeterlin
  • P. R. Vlasak
  • D. J. Beussman
  • R. D. McLane
  • C. G. Enke
Communication

Abstract

High efficiency photo-induced dissociation (PID) has been demonstrated in a tandem time-of-flight mass spectrometer. This instrument focuses isomass ion packets to temporal and spatial dimensions similar to those of the focused laser pulses from a high power excimer laser. This high density overlap of photons and ions yields highly efficient fragmentation and also provides high resolution selection of specific precursor ion mass-to-charge ratio values. Using 193 nm photon excitation of the molecular ion of bromobenzene (m/z = 1561, fragmentation, collection, and PID efficiencies af 79%, 132%, and 104%, respectively, were obtained. Characteristic fragmentations of toluene, nitrobenzene, acetophenone, triethylamine, N,N-diethylformamide, N-methylacetamide, and cyclohexene have also been demonstrated.

Keywords

Bromobenzene Product Spectrum Focus Laser Pulse Laser Delay High Power Excimer Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    McGilvery, D. C.; Morrison, J. D. Int. J. Mass Spectrom. Ion Physics 1978, 28, 81–92.CrossRefGoogle Scholar
  2. 2.
    Krailler, R. E.; Russell, D. H. Int. J: Mass Spectrom. Ion Processes 1985, 66, 339–351.CrossRefGoogle Scholar
  3. 3.
    Krailler, R. E.; Russell, D. H. Anal. Chem. 1985, 57, 1211–1216.CrossRefGoogle Scholar
  4. 4.
    Tecklenburg, R E. Jr.; Russell, D. H. Presented at the Pittburgh Conference; Atlanta, GA, March 1989; p 488.Google Scholar
  5. 5.
    Colby, S. M.; Yang, M.; Reilly, J. P. Presented at the Pittsburgh Conference; Atlanta, GA, March 1989; p 482.Google Scholar
  6. 6.
    LaiHing, K.; Cheng, P. Y.; Taylor, T. G.; Willey, K. F.; Peschke, M.; Duncan, M. A. Anal. Chem. 1989, 61, 1458–1460.CrossRefGoogle Scholar
  7. 7.
    Weinkauf, R.; Walter, K.; Weickhardt, C.; Boesl, U.; Schlag, E. W. Z. Naturforsch 1989, 44a, 1219–1225.Google Scholar
  8. 8.
    Yefchak, G. E.; Puzycki, M. A.; Allison, J.; Enke, C. G.; Grix, R.; Holland, J. F.; Li, G.; Wang, Y.; Wollnik, H. Proceedings of the 38th ASMS Conference on Mass Spectromety and Allied Topics; Tucson, AZ, June 1990; p 540.Google Scholar
  9. 9.
    Dunbar, R. C. In: Gas Phase Ion Chemistry. Vol. 2. Bowers, M. T., Ed. Academic: New York, 1979; p 181.Google Scholar
  10. 10.
    Yost, R. A.; Enke, C. G.; McCilvery, D. C.; Smith, D.; Morrison, J. D. Int. J. Mass Spectrom. Ion Physics 1979, 30, 127–136.CrossRefGoogle Scholar
  11. 11.
    Meier, R; Eberhardt, P. Int. J. Mass Spectrom. Ion Presses 1993, 123, 19–27.CrossRefGoogle Scholar
  12. 12.
    Bowers, W. D.; Delbert, S.-S.; McIver, R. T. Jr. And. Chem. 1986, 58, 969–972.Google Scholar

Copyright information

© American Society for Mass Spectrometry 1993

Authors and Affiliations

  • M. A. Seeterlin
    • 1
  • P. R. Vlasak
    • 1
  • D. J. Beussman
    • 1
  • R. D. McLane
    • 1
  • C. G. Enke
    • 1
  1. 1.Department of ChemistryMichigan State UniversityEast LansingUSA

Personalised recommendations