Determination of Positions, Velocities, and Kinetic Energies of Resonantly Excited Ions in the Quadrupole Ion Trap Mass Spectrometer by Laser Photodissociation

  • J. D. Williams
  • R. G. Cooks
  • J. E. P. Syka
  • P. H. Hemberger
  • N. S. Nogar
Articles

Abstract

The effects on ion motion caused by the application of a resonance AC dipole voltage to the end-cap electrodes of the quadrupole ion trap are described. An excimer laser is used to photodissociate benzoyl ions, and its triggering is phase locked to the AC voltage to follow the motion of the ion cloud as a function of the phase angle of the AC signal. Resonantly excited ions maintain a coherent motion in the presence of He buffer gas, which dissipates energy from the ions via collisions. Maximum ion displacements, which depend upon the potential well depth (q z value), occur twice each AC cycle. Axial components of ion velocities are determined by differentiating the displacements of the distributions with respect to time. The experimental data show that these velocities are maximized when the ion cloud passes through zero axial displacement, and they compare favorably with results calculated using a simple harmonic oscillator model. Axial components of ion kinetic energies are low (<5 eV) under the chosen experimental conditions. At low values of q2 (≈ 0.2), the width of the ion distribution increases as the ion cloud approaches the center of the trap and decreases as it approaches the end-cap electrodes. This effect is created by compaction of the ion trajectories when ion velocities are decreased,

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fischer, E. Z. Phys, 1959, 256, 1.CrossRefGoogle Scholar
  2. 2.
    Wuerker, R. F.; Shelton, H.; Langmuir, R. V. J. Appl. Phys. 1959, 30, 342.CrossRefGoogle Scholar
  3. 3.
    Rettinghaus, V. von G. Z. Agnew. Phys. 1967, 22, 321.Google Scholar
  4. 4.
    Fulford, J. E.; Hoa, D.-N.; Hughes, R. J.; March, R. E.; Bonner, R F.; Wong, G. J. J. Vac. Set Technol. 1980, 17, 829.CrossRefGoogle Scholar
  5. 5.
    Syka, J. E. P.; Fies, W. J. Jr. Proceedings of the 35th ASMS Conference on Mass Spectrometry and Allied Topics; Denver, CO, May 24–29, 1987; p 767.Google Scholar
  6. 6.
    Wobschall, D.; Graham, J. R.; Malone, D. P. Phys. Rev. 1963, 131, 1565.CrossRefGoogle Scholar
  7. 7.
    Baldeschwieler, J. D, Science 1968, 159, 263CrossRefGoogle Scholar
  8. 8.
    Comisarow, M. B.; Marshall, A. G. Chem. Phys. Lett. 1974, 25, 282.CrossRefGoogle Scholar
  9. 9.
    Kaplan, F. J. Am. Chem. Soc. 1968, 90, 4486.Google Scholar
  10. 10.
    Cody, R. B.; Burnier, R. C; Freiser, B. S. Anal. Chem. 1982, 54, 96.CrossRefGoogle Scholar
  11. 11.
    Kelley, P. E.; Stafford, G. C. Jr.; Syka, J. E. P.; Reynolds, W. E.; Todd, J. F. J. Adv. Mass Spectrom. 1985, 10, 869.Google Scholar
  12. 12.
    Louris, J. N.; Cooks, R. G.; Syka, J. E. P.; Kelley, P. E.; Stafford, G. C. Jr.; Todd, J. F. J. Anal, Chem. 1987, 59, 1677.CrossRefGoogle Scholar
  13. 13.
    Kaiser, R. E. Jr.; Louris, J. N.; Amy, J. W.; Cooks, R. G. Rapid Commun. Mass Spectrom. 1989, 3, 225,CrossRefGoogle Scholar
  14. 14.
    Kaiser, R. E. Jr.; Cooks, R. G.; Stafford, G. C. Jr.; Syka, J. E. P.; Hemberger, P. H. Int. J. Mass Spectrom. Ion Processes 1991, 106, 79.CrossRefGoogle Scholar
  15. 15.
    March, R. E.; Hughes, R. J. Quadrupole Storage Mass Spectrom-etry; Wiley: New York, 1991, and references within.Google Scholar
  16. 16.
    Schaaf, H.; Schmeling, U.; Werth, G. Appl. Phys. 1981, 25, 249.CrossRefGoogle Scholar
  17. 17.
    Siemers, L.; Blatt, R.; Sauter, T.; Neuhauser, W. Phys. Rev. A 1988, 38, 5121.CrossRefGoogle Scholar
  18. 18.
    Schubert, M.; Siemers, I.; Blatt, R. AppL Phys. B 1990, 51,414.CrossRefGoogle Scholar
  19. 19.
    Vedel, F.; Vedel, M. J. Mod. Opt. 1992, 39, 431.CrossRefGoogle Scholar
  20. 20.
    Stafford, G. C.; Kelley, P. E.; Syka, J. E. P.; Reynolds, W. E.; Todd, J. F. J. Int. J. Mass Spectrom. Ion Processes 1984, 60, 85.CrossRefGoogle Scholar
  21. 21.
    Reiser, H.-R.; Kaiser, R. E. Jr.; Savickas, P. J.; Cooks, R. G. Int. J. Mass Spectrom. Ion Processes 1991, 106, 237.CrossRefGoogle Scholar
  22. 22.
    Franzen, J. Int. J. Mass Spectrom. ion Processes 1991, 106, 63.CrossRefGoogle Scholar
  23. 23.
    March, R. E.; Londry, F. A.; Alfred, R. L.; Todd, J. F. J.; Penman, A. D.; Vedel, F.; Vedel, M. Int. J. Mass Spectrom, Ion Processes 1992, 110, 159.CrossRefGoogle Scholar
  24. 24.
    Julian, R. K. Jr.; Reiser, H.-P.; Cooks, R. G. Int. J. Mass Spectrom, Ion Processes, 1993, 123, 85.CrossRefGoogle Scholar
  25. 25.
    Reiser, H.-P.; Julian, R. K. Jr,; Cooks, R. G. Int. J Mass Spectrom. Ion Processes 1992, 121, 49.CrossRefGoogle Scholar
  26. 26.
    March, R. E.; McMahon, A. W.; Todd, J. F. J.; Vedel, F. Int. J. Mass Spectrom. Ion Processes 1989, 95,119.CrossRefGoogle Scholar
  27. 27.
    March, R. E.; McMahon, A. W.; Allinson, E. T.; Londry, F. A.; Alfred, R. L.; Todd, J. F. J.; Vedel, F. Int. J. Mass Spectrom. Ion Processes 1990, 109, 99.Google Scholar
  28. 28.
    Johnson, J. V.; Yost, R. A.; Kelley, P. E.; Bradford, D. C. Anal Chem. 1990, 61, 2162.CrossRefGoogle Scholar
  29. 29.
    Gronowska, J.; Paradisi, C.; Traldi, P.; Vettori, U. Rapid Commun. Mass Spectrom. 1990, 4, 306.CrossRefGoogle Scholar
  30. 30.
    Charles, M. J.; McLuckey, S. A.; Glish, G. L. Proceedings of the 40th ASMS Conference on Mass Spectrometry and Allied Topics, Washington, DC, May 31-June 5, 1992; p 57.Google Scholar
  31. 31.
    Hemberger, P. H.; Nogar, N. S.; Williams, J. D.; Cooks, R. G.; Syka, J. E. P. Chem. Phys. Lett. 1992, 191, 405.CrossRefGoogle Scholar
  32. 32.
    Hemberger, P. H.; Alexander, M. L.; Cisper, M. E.; Nogar, N. S.; Williams, J. D.; Cooks, R. G.; Syka, J. E. P. Proceedings of the 40th ASMS Conference on Mass Spectrometry and Allied Topics, Washington, DC, May 31-June 5, 1992; p 52LGoogle Scholar
  33. 33.
    Alexander, M. L.; Hemberger, P. H.; Cisper, M. E.; Nogar, N. S.; Williams, J. D.; Cooks, R. G.; Syka, J. E. P. Presented at FACSS XIX; Philadelphia, PA, September 20–25, 1992.Google Scholar
  34. 34.
    Hemberger, P. H.; Alexander, M. L.; Cisper, M. E.; Nogar, N. S.; Williams, J. D.; Cooks, R. G.; Syka, J. E. P. to be submitted.Google Scholar
  35. 35.
    Whetten, N. R. J. Vac. Sci. Technol 1974, 13, 515.CrossRefGoogle Scholar
  36. 36.
    Kreyszig, E. Advanced Engineering Mathematics, 6th ed.; Wiley: New York, 1988; p 129.Google Scholar
  37. 37.
    Major, F. G.; Dehmelt, H. C. Phys. Rev. 1968, 179, 91.CrossRefGoogle Scholar
  38. 38.
    Louris, J.; Schwartz, J.; Stafford, G.; Syka, J.; Taylor, D. Proceedings of the 40ih ASMS Conference on Mass Spectrometry and Allied Topics, Washington, DC, May 31-June 5, 1992; p 1003.Google Scholar
  39. 39.
    Williams, J. D.; Reiser, H.-P.; Kaiser, R. E. Jr.; Cooks, R. G. Int. J. Mass Spectrom. Ion Processes 1991, 108, 199.CrossRefGoogle Scholar
  40. 40.
    Guidugli, F.; Traldi, P. Rapid Commun. Mass Spectrom. 1991, 5, 343.CrossRefGoogle Scholar
  41. 41.
    Eades, D. M.; Yost, R. A. Rapid Commun. Mass Spectrom. 1992, 6, 573.CrossRefGoogle Scholar
  42. 42.
    Lammert, S. A. Ph.D. thesis, Purdue University, 1992; Chapter 5.Google Scholar
  43. 43.
    Traldi, P.; Curcuto, O.; Bortolini, O. Rapid Commun. Mass Spectrom. 1992, 6, 410.CrossRefGoogle Scholar
  44. 44.
    Traldi, P.; Faveretto, D. Rapid Commun. Mass Spectrom. 1992, 6, 543.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 1993

Authors and Affiliations

  • J. D. Williams
    • 1
  • R. G. Cooks
    • 1
  • J. E. P. Syka
    • 2
  • P. H. Hemberger
    • 3
  • N. S. Nogar
    • 3
  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA
  2. 2.Finnigan MATSan JoseUSA
  3. 3.CLS DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations