Surface-Induced dissociation from a liquid surface

  • T. Pradeep
  • S. A. Miller
  • R. G. Cooks


Mass-selected projectile ions in the tens of electronvolt energy range undergo surface-induced dissociation upon collision with a liquid perfluorinated polyether (PFPE) surface. The efficiency of translational-to-vibrational (T-V) energy transfer is similar to that observed for a fluorinated self-assembled monolayer (SAM) surface. The thermometer ion W(CO)^’ was used to detenrrine an average T-V conversion efficiency of 18% in the collision energy range of 30–50 eV. The surface can be bombarded for several hours without displaying any change in the scattered ion products. Ion-surface reactions occur with some projectiles and are analogous to those seen with the fluorinated SAM surface. For example, WF+(m=1–5) and W(CO)nF+ (n=1–2, m=1–2) are generated upon collisions of W(CO)6+ with the PFPE liquid surface. The ion-surface reactions observed suggest that F atoms and/or CF3 groups are accessible for reaction while the oxygen atoms lie below the outermost surface layer. Chemical sputtering of the liquid surface also occurs and yields common fluorocarbon fragment ions, including CF3+, C2F5+, and C3F7+ and the oxygenated product CFO+. The liquid surface is remarkably free of hydrocarbon impurities. Collisions of the pyrazine and benzene molecular ions, both probes for hydrocarbon impurities, resulted in very little protonated pyrazine or protonated benzene.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cooks, R. G.; Ast, T.; Mabud, Md. A. Int. J. Mass Spectrom. Ion Processes 1990, 100, 209–265.CrossRefGoogle Scholar
  2. 2.
    Wright, A. D.; Despeyroux, D.; Jennings, K. R.; Evans, S.; Riddoch, A. Org. Mass. Spectrom. 1992, 27, 525–527.CrossRefGoogle Scholar
  3. 3.
    Somogyi, A.; Kane, T. E.; Ding, J.M.; Wysocki, V. H. J. Am. Chem. Soc. 1993, 125, 5275.CrossRefGoogle Scholar
  4. 4.
    Qinyuan, W.; Hanley, L. J. Phys. Chem. 1993, 97, 2677–2686.CrossRefGoogle Scholar
  5. 5.
    Schey, K. L.; Cooks, R. G.; Kraft, A.; Grix, R; Wollnik, H. Int. J. Mass Spectrom. Ion Processes 1989, 94, 1–14.CrossRefGoogle Scholar
  6. 6.
    Aberth, W. Anal. Chem. 1990, 62, 609–611.CrossRefGoogle Scholar
  7. 7.
    Li, G.; Ehahr, A.; Wollnik, H. J. Am. Soc. Mass. Spectrom. 1992, 3, 487.CrossRefGoogle Scholar
  8. 8.
    Williams, E. R.; Jones, G. C.; Fang, L.; Zare, R. N.; Garrison, B. J.; Brenner, D. W. J. Am. Chem. Soc. 1992, 214, 3207–3210.CrossRefGoogle Scholar
  9. 9.
    Ijames, C. F.; Wilkens, C. L. Anal. Chem. 1990, 62, 1295–1299.CrossRefGoogle Scholar
  10. 10.
    Lammert, S. A.; Cooks, R. G. J. Am. Soc. Mass Spectrom. 1991, 2, 487–491.CrossRefGoogle Scholar
  11. 11.
    Schey, K. L.; Thornburg, K. R. 41st ASMS Conference on Mass Spectrometry and Allied Topics. San Francisco, CA, May 30-June 4, abstract 75.Google Scholar
  12. 12.
    Despeyroux, D.; Wright, A. D.; Jennings, K. R.; Evans, S.; Riddoch, A. Int. J. Mass Spectrom. Ion Processes 1992, 222, 133–141.CrossRefGoogle Scholar
  13. 13.
    Chorush, R. A.; Vidavsky, I.; McLafferty, F. W. Org. Mass Spectrom, in press.Google Scholar
  14. 14.
    Ast, T.; Schey, K. L.; Cooks, R. G.; J. Serb. Chem. Soc. 1990, 55, 247–256.Google Scholar
  15. 15.
    DeKrey, M. J.; Kenttämaa, H. I.; Wysocki, V. H.; Cooks, R. G. Org. Mass Spectrom. 1986, 22, 193–195.CrossRefGoogle Scholar
  16. 16.
    Morris, M. R.; Riederer, D. E., Jr.; Winger, B. E.; Cooks, R. G.; Ast, T.; Chidsey, C. E. D. Int. J. Mass Spectrom. Ion Processes 1992, 122, 181–217.CrossRefGoogle Scholar
  17. 17.
    Wysocki, V. H.; Jones, J. L.; Ding, J.-M. J. Am. Chem. Soc. 1991, 133, 8970.Google Scholar
  18. 18.
    Winger, B. E.; Julian, R. K. Jr.; Cooks, R. G.; Chidsey, C. E. D. J. Am. Chem. Soc. 1991, 113, 8967–8969.CrossRefGoogle Scholar
  19. 19.
    Wu, Q.; Hanley, L. 41st ASMS Conference on Mass Spectrometry and Allied Topics. San Francisco, CA, May 30-June 4, abstract 281.Google Scholar
  20. 20.
    Benninghoven, A.; Rüdenauer, F. G.; Werner, H. W. Secondary Ion Mass Spectrometry; John Wiley & Sons: New York, 1987.Google Scholar
  21. 21.
    Barber, M.; Bordoli, R. S.; Sedgwick, R. D.; Tyler, A. N. J. Chem. Soc. Chem. Commun. 1981, 325–327.Google Scholar
  22. 22.
    Wilkins, C. L.; Weil, D. A.; Yang, C. L. C.; Ijames, C. F. Anal Chem. 1985, 57, 520–524.CrossRefGoogle Scholar
  23. 23.
    Bletsos, I. V.; Hercules, D. M. Anal Chem. 1990, 62,1275–1284.CrossRefGoogle Scholar
  24. 24.
    Pacansky, J.; Waltman, R. J. J. Phys. Chem. 1991, 95, 1512–1518.CrossRefGoogle Scholar
  25. 25.
    King, M. E.; Nathanson, G. M.; Hanning-Lee, M. A.; Minton, T. K. Phys. Rev. Lett. 1993, 70, 1026–1029.CrossRefGoogle Scholar
  26. 26.
    Winger, B. E.; Laue, H.-J.; Horning, S. R.; Julian, R. K., Jr.; Lammert, S. A.; Riederer, D. E., Jr.; Cooks, R. G. Rev. Sei. Instrum. 1992, S3, 5613–5625.CrossRefGoogle Scholar
  27. 27.
    27. Material Safety Data Sheet, Du Font Chemicals, 5357PP, 1992.Google Scholar
  28. 28.
    Bain, C D.; Troughton, E. B.; Tao, Y-T; Evall, J.; Whitesides, G. M.; Nuzzo, R. G. J. Am. Chem. Soc. 1989, 111, 321.CrossRefGoogle Scholar
  29. 29.
    Winters, R. E.; Kiser, R. W. Inorg. Chem. 1965, 4, 157.CrossRefGoogle Scholar
  30. 30.
    Pradeep, T.; Miller, S. A.; Riederer, D. E., Jr.; Cooks, R. G.; in preparation.Google Scholar

Copyright information

© American Society for Mass Spectrometry 1993

Authors and Affiliations

  • T. Pradeep
    • 1
  • S. A. Miller
    • 1
  • R. G. Cooks
    • 1
  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations