Influence of cysteine to cysteic acid oxidation on the collision-activated decomposition of protonated peptides: Evidence for intraionic interactions

  • Odile Burlet
  • Chao-Yuh Yang
  • Simon J. Gaskell
Articles

Abstract

Oxidation of cysteine residues to cysteic acids in C-terminal arginine-eontaining peptides (such as those derived by tryptic digestion of proteins) strongly promotes the formation of multiple members of the Y− series of fragment ions following low energy collision-activated decomposition (CAD) of the protonated peptides, Removal of the arginine residue abolishes the effect, which is also attenuated by conversion of the arginine to dimethylpyrim-idylornithine. The data indicate the importance of an intraionic interaction between the cysteic acid and arginine side-chains. Low energy CAD of peptides which include cysteic acid and histidine residues, also provides evidence for intraionic interactions. It is proposed that these findings are consistent with the general hypothesis that an increased heterogeneity (with respect to location of charge) of the protonated peptide precursor ion population is beneficial to the generation of a high yield of product ions via several charge-directed, low energy fragmentation pathways. Furthermore, these data emphasize the significance of gas-phase conformations of protonated peptides in determining fragmentation pathways.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biemann, K. Biomed. Environ. Mass Spectrom. 1988, 16, 99.CrossRefGoogle Scholar
  2. 2.
    Hunt, D. F.; Yates, J. R.; Shabanowitz, J.; Winston, S.; Hauer, C. R. Proc. Natl. Acad. Sci. USA 1986, 83, 6233.CrossRefGoogle Scholar
  3. 3.
    Biemann, K. In Biological Mass Spectrometry; Burlingame, A. L.; McCloskey, J. A., Eds.; Elsevier: Amsterdam, 1990; p 170.Google Scholar
  4. 4.
    Walls, F. C.; Baldwin, M. A.; Falick, A. M.; Gibson, B. W.; Kaur, S.; Maltby, D. A.; Gillece-Casrro, B. L.; Medzihradszky, K.F. ; Evans, S.; Burlingame, A. L. In Biological Mass Spectrometry; Burlingame, A. L.; McCloskey, J. A., Eds.; Elsevier: Amsterdam, 1990; p 197.Google Scholar
  5. 5.
    Carr, S. A.; Hemling, M. E.; Roberts, G. D. In Macromolecular Sequencing and Synthesis: Selected Methods and Applications; Schlesinger, D. H., Ed.; Alan R. Liss: New York, 1988; p 83.Google Scholar
  6. 6.
    Sakurai, T.; Matsuo, T.; Matsuda, H.; Katakuse, I. Biomed. Mass Spectrom. 1984, 11, 396.CrossRefGoogle Scholar
  7. 7.
    Johnson, R. S; Biemann, K. Biomed. Environ. Mass Spectrom. 1989, 18, 945.CrossRefGoogle Scholar
  8. 8.
    Medzihradszky, K. P.; Hall, S. C.; Maltby, S. C.; Hines. W. M.; Burlingame, A. L. In Techniques in Protein Chemistry II; Villafranca, J., Ed.; Harcourt Brace Jovanovich: San Diego, 1990; p 435.Google Scholar
  9. 9.
    Roepstorff, P.; Pohlman, J. Biomed. Mass Spectrom. 1984, 11, 601.CrossRefGoogle Scholar
  10. 10.
    Johnson, R. S.; Martin,S. A; Biemann, K. Int. J. Mass Spectrom. Ion Processes 1989, 86, 137.CrossRefGoogle Scholar
  11. 11.
    Johnson, R. S.; Martin, S. A.; Biemann, K.; Stults, J. T.; Watson. J. T. Anal. Chem. 1981, 59, 2621.CrossRefGoogle Scholar
  12. 12.
    Poulter, L.; Taylor, L. Int. J. Mass Spectrom. Ion Processes 1989, 91,183.CrossRefGoogle Scholar
  13. 13.
    Alexander, A. J.; Thibault, P.; Boyd, R. K.; Curtis, J. M; Rinehart, K. L. Int. J. Mass Spectrom. Ion Processes 1990, 98. 107.CrossRefGoogle Scholar
  14. 14.
    Bean, M. P.; Carr, S. A.; Thorne, G. C; Reilly, M. H.; Gaskell, S. J. Anal. Chem. 1991. 63, 1473.CrossRefGoogle Scholar
  15. 15.
    Thome, G. C.; Ballard, K. D.; Gaskell, S. J. J. Am. Soc. Mass Spectrom. 1990, 1, 249.CrossRefGoogle Scholar
  16. 16.
    Ballard, K. D.; Gaskell, S. J. J. Am. Chem. Soc., 1992, 114. 64.CrossRefGoogle Scholar
  17. 17.
    Glish, G. L.; McLuckey, S. A.; Van Berkel, G. J. Proceedings of the 38th ASMS Conference on Mass Spectrometry and Allied Topics; Tucson, AZ, June 3–8, 1990; P 922.Google Scholar
  18. 18.
    Steinberg, D. Atherosclerosis Rev. 1988, 18, 1.Google Scholar
  19. 19.
    Brown, M. S.; Goldstein, J. L. Ann. Rev. Biochem. 1983, 52, 223.CrossRefGoogle Scholar
  20. 20.
    Sanger, F. Biochem. J. 1949, 44, 126.Google Scholar
  21. 21.
    Sun, Y.; Smith, D. L. Anal. Biochem. 1988, 172, 130.CrossRefGoogle Scholar
  22. 22.
    Yang, C.-Y.; Kim, T. W.; Sparrow, J. T.; Gaskell, S. J. J. Protein Chem. 1990, 9, 323.CrossRefGoogle Scholar
  23. 23.
    Riemann, K. In Methods in Enzymology, Vol. 193; McCloskey, J. A., Ed.: Academic: San Diego, 1990; p 455.Google Scholar
  24. 24.
    Jensen, N. J.; Tomer, K. B.; Gross, M. L. J. Am. Chem. Soc. 1985, 107, 1863.CrossRefGoogle Scholar
  25. 25.
    Alexander, A. J.; Boyd, R. K. Int. J. Mass Spectrom. Ion Processes 1989, 90, 211.CrossRefGoogle Scholar
  26. 26.
    Vath, J. E.; Riemann, K. Int. J. Mass Spectrorn. Ion Proceeses 1990, 100, 287.CrossRefGoogle Scholar
  27. 27.
    Wagner, D. S.; Salari, A.; Gage, D. A.; Leykam, J.; Fetter, J.; Hollingsworth, R; Watson, J. T. BioI. Mass Spectrom. 1991, 20, 419.CrossRefGoogle Scholar
  28. 28.
    Stults, J. T.; Halualani, R.; Wetzel, R. Proceedings of the 37th ASMS Conference on Mass Spectrometry and Allied Topics; Miami Beach, FL, May 21–26,1989; P 856.Google Scholar

Copyright information

© American Society for Mass Spectrometry 1992

Authors and Affiliations

  • Odile Burlet
    • 1
    • 2
  • Chao-Yuh Yang
    • 1
  • Simon J. Gaskell
    • 1
  1. 1.Department of MedicineBaylor College of MedicineHouston
  2. 2.Department of ChemistryUniversity of HoustonHoustonUSA

Personalised recommendations