Surface-induced dissociation of molecular ions in a quadrupole ion trap mass spectrometer

  • S. A. Lammert
  • R. G. Cooks
Articles

Abstract

A method is reported by which surface-induced dissociation is used to activate ions stored in a quadrupole ion trap mass spectrometer. The method employs a short (< 5 /-Is), fast-rising (< 20-ns rise time), high voltage direct current (dc) pulse, which is applied to the endcaps of a standard Paul-type quadrupole ion trap. This is in contrast to the application of an alternating current (ac) signal normally used to resonantly excite and dissociate ions in the trap. The effect of the de pulse is to cause the ions rapidly to become unstable in the radial direction and subsequently to collide with the ring electrode. Sufficient internal energy is acquired in this collision to cause high energy fragmentations of relatively intractable molecular ions such as pyrene and benzene. The dissociations of limonene are used to demonstrate that high energy demand processes increase in relative importance in the dc pulse experiment compared with the usual resonance excitation method used to cause activation. The fragments are scanned out of the ion trap using the conventional mass-selective instability scan mode. Simulations of ion motion in the trap provide evidence that surface collisions occur at kinetic energies in the range of tens to several hundred electronvolts. The experiments also demonstrate that production of fragment ions is sensitive to the phase of the main radiofrequency drive voltage at the point when the dc is initiated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kaminsky, M. Atomic and Ionic Impact Phenomena on Metal Surfaces; Academic: New York, 1965.Google Scholar
  2. 2.
    Kasi, S. R.; Kang, H.; Sass, C. S.; Rabalais, J. W. Surf. Sci. Rep. 1989, 10, 1.CrossRefGoogle Scholar
  3. 3.
    Cooks, R. G.; Ast, T.; Mabud, M. A. Int. J. Mass Spectrom. Ion Processes 1990, 100, 209.CrossRefGoogle Scholar
  4. 4.
    van Zoest, J. M.; van der Meij, C. E.; Fluit, J. M. Nucl. Instrum. Methods 1986, B13, 587.Google Scholar
  5. 5.
    Kang, H.; Schuler, T. R; Rabalais, J. W. Chem. Phys. Rev. 1986, 128, 348.Google Scholar
  6. 6.
    Vincenti, M.; Homing, S. R; Cooks, R. G. Org. Mass Spectrom. 1988, 23, 585.CrossRefGoogle Scholar
  7. 7.
    Ast, T.; Mabud, M. A.; Cooks, R G. Int. J. Mass Spectrom. Ion Processes 1988, 82, 131.CrossRefGoogle Scholar
  8. 8.
    Snowdon, K. Nucl. Instrum. Methods 1988, 833, 365.Google Scholar
  9. 9.
    Heiland, W.; Beilat, W.; Taglauer, E. Phys. Rev. 1979, 19, 1677.CrossRefGoogle Scholar
  10. 10.
    Coburn, J. W.; Winters, H. F. J. Appl. Phys. 1979, 50, 3189.CrossRefGoogle Scholar
  11. 11.
    Hasted, J. B. Physics of Atomic Collisions, 2nd ed.: Elsevier: New York, 1972.Google Scholar
  12. 12.
    Cooks, R. G., Ed. Collision Spectroscopy; Plenum: New York, 1978.Google Scholar
  13. 13.
    Graul, S. T.; Squires, R. R. Mass Spectrom. Rev. 1987, 7, 263.CrossRefGoogle Scholar
  14. 14.
    Russell, D. H. Gas Phase Inorganic Chemistry; Plenum: New York, 1989.Google Scholar
  15. 15.
    Buchanan, M. V. Fourier Transform Mass Spectrometry; ACS Symposium Series 359; American Chemical Society: Washington, DC, 1987.CrossRefGoogle Scholar
  16. 16.
    Ast, T. Adv. Mass Spectrom. 1986, 10, 471.Google Scholar
  17. 17.
    Bordas-Nagy, J.; Jennings, K. R. Int. J. Mass Spectrom. Ion Processes 1990, 100, 105.CrossRefGoogle Scholar
  18. 18.
    McLafferty, F. W., Ed. Tandem Mass Spectrometry; Wiley: New York, 1983.Google Scholar
  19. 19.
    Levsen, K.; Schwarz, H. Mass Spectrom. Rev. 1983, 2, 77.CrossRefGoogle Scholar
  20. 20.
    Busch, K. L.; Glish, G. L.; McLuckey, S. A. Mass Spectrometry/ Mass Spectrometry, Techniques and Applications of Tandem Mass Spectrometry; VCH: New York, 1988.Google Scholar
  21. 21.
    Desiderio, D., Ed. Mass Spectrometry of Peptides; CRC: Boca Raton, FL, 1991.Google Scholar
  22. 22.
    Biernann, K.; Martin, S. A. Mass Spectrom. Rev. 1987, 6, 1.CrossRefGoogle Scholar
  23. 23.
    Grotemayer, J.; Schlag, E. W. Acc. Chem. Res. 1989, 22, 399.CrossRefGoogle Scholar
  24. 24.
    Lubman, D. M., Ed. Lasers and Mass Spectrometry; Oxford: New York, 1990.Google Scholar
  25. 25.
    Dunbar, R. C. In Gas Phase Ion Chemistry, Vol. 3; Bowers, M. T., Ed.; Academic: Orlando, FL, 1984.Google Scholar
  26. 26.
    Mabud, M. A.; DeKrey, M. J.; Cooks, R. G. Int. J. Mass Spectrom. Ion Processes 1985, 67, 285.CrossRefGoogle Scholar
  27. 27.
    Bier, M. E.; Amy, J. W.; Cooks, R. G.; Syka, J E. P.; Ceja, P.; Stafford, G. Int. J. Mass Spectrom. Ion Processes 1987, 7 31.CrossRefGoogle Scholar
  28. 28.
    Schey, K.; Cooks, R. G.; Grix, R.; Wollnik, H. Int. J. Mass Spectrom. Ion Processes 1987, 77, 49.CrossRefGoogle Scholar
  29. 29.
    Bier, M. E.; Schwarz, J. C, Schey, K. L.; Cooks, R. G. Int. J. Mass Spectrom. Ion Processes 1990, 103, 1.CrossRefGoogle Scholar
  30. 30.
    Aberth, W. Anal. Chem. 1990, 13, 609.CrossRefGoogle Scholar
  31. 31.
    LeMeillour,.C.; Cole, R.; Clairet, F.; Fournier, F.; Tabet, J. C.; Blasco, T.; Beaugrand, C.; Devant, G. Adv. Mass Spectrom, 1989, 11, 236.Google Scholar
  32. 32.
    Wysocki, V. H.; Ding, J. M.; Jones, J. L.; Callahan, J. H.; King, F. L.; J. Am. Soc. Mass Spectrom. (in press). 33. Ijames, C. F.; Wilkens, C. L. Anal. Chem. 1990, 13, 1295.Google Scholar
  33. 34.
    Williams, E. R.; Henry, K. D.; McLafferty, F. W.; Shabanowitz, J.; Hunt, D. F. J. Am. Soc. Mass Spectrom. 1990, 1, 413.CrossRefGoogle Scholar
  34. 35.
    Paul, W.; Steinwedel, H. U.S. Patent 2939952, June 7, 1960.Google Scholar
  35. 36.
    March, R. E.; Hughes, R. J. Quadrupole Storage Mass Spectrometry; Wiley: New York, 1989.Google Scholar
  36. 37.
    Cooks, R. G.; Kaiser, R. E. Jr. Ace. Chem. Res. 1990, 23, 213.CrossRefGoogle Scholar
  37. 38.
    Glish, G. L.; McLuckey, S. A. Anal. Chem. 1990, 62, 1284.CrossRefGoogle Scholar
  38. 39.
    Johnson, J. V.; Yost, R. A.; Kelley, P. E.; Bradford, D. C. Anal. Chem. 1990, 62, 2162.CrossRefGoogle Scholar
  39. 40.
    Todd, J. F. J. Mass Spectrom. Rev. 1991, 10, 3.CrossRefGoogle Scholar
  40. 41.
    Wysocki, V. H.; Kenttiimaa, H. I.; Cooks, R. G. Int. J. Mass Spectrom. Ion Processes 1987, 75, 181.CrossRefGoogle Scholar
  41. 42.
    Louris, J. N.; Cooks, R. G.; Syka, J. E. P.; Kelley, P. E.; Stafford, G. C., Todd, J. F. J. Anal. Chem. 1987, 59, 1677.CrossRefGoogle Scholar
  42. 43.
    Pachuta, S. J.; Kenttiimaa, H. J.; Sack, T. M.; Cerny, R. L. Tomer, K. B.; Gross, M. L.; Pachuta, R. R; Cooks, R G. J. Am. Chem. Soc. 1988, 110, 657.CrossRefGoogle Scholar
  43. 44.
    Nourse, B. N.; Cox, K. A.; Cooks, R. G. Submitted to J. Am. Chern. Soc. Google Scholar
  44. 45.
    Reiser, H.-P.; Julian, R. K.; Cooks, R. G. Manuscript to be submitted.Google Scholar
  45. 46.
    Reiser, H.-P.; Kaiser, R. E.; Savickas, P. J.; Cooks, R. G. Int. J. Mass Spectrom. Ion Processes, 1991, 106, 237.CrossRefGoogle Scholar
  46. 47.
    Major, F. G.; Dehmelt, N. G. Phys. Rev. 1968, 190, 91.CrossRefGoogle Scholar
  47. 48.
    Vincenti, M.; Horning, S. R.; Cooks, R. G. Org. Mass Spectrom. 1988, 23, 585.CrossRefGoogle Scholar
  48. 49.
    Homing, S. R.; Wood, J. M.; Gord, J. R.; Freiser, B. S.; Cooks, R. G. Int. J. Mass Spectrom. Ion Processes 1990, 101 219.CrossRefGoogle Scholar
  49. 50.
    Hayward, M. J.; Mabud, M. A.; Cooks, R G. J am. Chem. Soc. 1988, 110, 1343.CrossRefGoogle Scholar
  50. 51.
    Morand, K. T., Horning, S. R; Cooks, R G. Int. J. Mass Spectrom. Ion Processes, 1991, 105, 13.CrossRefGoogle Scholar
  51. 52.
    Schwartz, J. C.; Kaiser, R. E. Jr.; Cooks, R. G.; Savickas, P. J. Int. f. Mass Spectrom. Ion Processes 1990, 98, 209.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 1991

Authors and Affiliations

  • S. A. Lammert
    • 1
  • R. G. Cooks
    • 1
  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations