A hybrid double-focusing mass spectrometer—High-pressure drift reaction cell to study thermal energy reactions of mass-selected ions

  • Paul R. Kemper
  • Michael T. Bowers
Articles

Abstract

A new instrument is described that couples a reverse-geometry mass spectrometer operating at 5 kV to a high-pressure, temperature-variable drift reactor that operates at thermal energies. The first-stage mass spectrometer is a home-built instrument with the same dimensions and ion optics as a V.G. Instruments ZAB-2F. Ions exiting this instrument are decelerated to between 0 and 10 eV and focused on the entrance hole of the drift cell. The drift cell is 4.0 cm long and 1.52 cm in diameter and has a uniform drift field provided by stepped voltages applied to eight field guard rings. Pressure in the cell can be varied from 0 to 2 torr, and temperatures from 100 to 500 K. Ions exiting the cell are accelerated, passed through a quadrupole mass filter, and detected by an electron multiplier. A description is given of the ion optics used to focus and decelerate the beam from the first-stage mass spectrometer. Substantial analysis and discussion are given to ion energies in the cell and methods of pressure measurement. Experimental results obtained compare well with data in the literature when available. A new result on mobilities of Co+ ions in helium is presented. The data indicate that ions are present in both the ground state and metastable excited electronic state, exhibiting substantially different mobilities.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    (a) Adams, N. G.; Smith, D. Int. J. Mass Spectrom. Ion Processes 1976, 21, 349. (b) Smith, D.; Adams, N. G. In Gas Phase Ion Chemistry; Bowers, M. T., Ed.: Academic; New York, 1979; Vol. 1, p 1.CrossRefGoogle Scholar
  2. 2.
    McFarland, M.; Albritton, D. L.; Fehsenfeld, F. C., Ferguson, E. E.; Schmeltekopf, A. L. J. Chem. Phys. 1976, 59, 6610.CrossRefGoogle Scholar
  3. 3.
    Van Doren, J. M.; Barlow, S. E.; DePuy, C. H.; Bierbaum, V. M. Int. J. Mass Spectrom. Ion Processes 1987, 81, 85.CrossRefGoogle Scholar
  4. 4.
    (a) Smith, D. L.; Futrell, J. H. Int. J. Mass Spectrom. Ion Processes 1974, 14, 171. (b) Kemper, P. R.; Bowers, M. T. Int. J. Mass Spectrom. Ion Processes 1983, 52, 1.CrossRefGoogle Scholar
  5. 5.
    Armentrout, P. B.; Beauchamp, J. L. J. Chem. Phys. 1981, 74, 2819.CrossRefGoogle Scholar
  6. 6.
    Ervin, K. M.; Armentrout, P. B. J. Chem. Phys. 1985, 83, 166.CrossRefGoogle Scholar
  7. 7.
    (a) Lebrilla, C. B.; Amster, I. J.; McIver, R. T. Int. J. Mass Spectrom. Ion Processes 1989, 87, R7. (b) McIver, R. T.; Hunter, R. L.; Bowers, W. D. Int. J. Mass Spectrom. Ion Processes 1985, 64, 67.CrossRefGoogle Scholar
  8. 8.
    Kofel, P.; Alleman, M.; Kellerhals, H.; Wanczek, K. P. Int. J. Mass Spectrom. Ion Processes 1986, 72, 53; 1989, 87, 237.CrossRefGoogle Scholar
  9. 9.
    Shukla, A. K.; Anderson, S. G.; Howard, S. L.; Sohlberg, K. W.; Futrell, J. H. Int. J. Mass Spectrom. Ion Processes 1988, 86, 61.CrossRefGoogle Scholar
  10. 10.
    Bohringer, H.; Arnold, F. J. Chem. Phys. 1982, 77, 5534.CrossRefGoogle Scholar
  11. 11.
    Bohringer, H.; Arnold, F. Int. J. Mass Spectrom. Ion Processes 1983, 49, 61.CrossRefGoogle Scholar
  12. 12.
    Jarrold, M. F.; Bower, J. E.; Creegan, K. J. Chem. Phys. 1989, 90, 3615.CrossRefGoogle Scholar
  13. 13.
    Morgan, R. P.; Beynon, J. H.; Bateman, R. H.; Green, B. N. Int. J. Mass Spectrom. Ion Processes 1978, 28, 171.CrossRefGoogle Scholar
  14. 14.
    Dushman, S. In Scientific Foundation of Vacuum Technique; Lafferty, J. M., Ed.; Wiley: New York, 1962.Google Scholar
  15. 15.
    Holland, L.; Steckelmacher, W.; Yarword, J. Vacuum Manual; Halstead Press/Wiley: New York, 1974 (note typographical errors).Google Scholar
  16. 16.
    Shumacher, B. W. Trans. 8th Int. Vac. Symp. 1961, 2, 1192.Google Scholar
  17. 17.
    Poulter, K. F.; Rodgers, M.-J.; Thompson, T. J.; Perkin, M. P. Vacuum 1983, 33, 311.CrossRefGoogle Scholar
  18. 18.
    McDaniel, E. W.; Mason, E. A. The Mobility and Diffusion of Ions in Gases; Wiley: New York, 1973.Google Scholar
  19. 19.
    Chang, C.; Sroka, G. J.; Meisels, G. G. Int. J. Mass Spectrom. Ion Processes 1973, 11, 367.CrossRefGoogle Scholar
  20. 20.
    Albritton, D. L. In Kinetics of Ion-Molecule Reactions; Ausloos, P., Ed.; Plenum; New York, 1979.Google Scholar
  21. 21.
    Viehland, L. A.; Lin, S. L.; Mason, E. A. Chem. Phys. 1981, 54, 341.CrossRefGoogle Scholar
  22. 22.
    Lindinger, W. Int. J. Mass Spectrom. Ion Processes 1987, 80, 115.CrossRefGoogle Scholar
  23. 23.
    Lindinger, W.; Howorka, F.; Lukac, P.; Kuhn, S.; Villinger, H.; Alge, E.; Ramler, H. Phys. Rev. A 1981, 23, 2319.CrossRefGoogle Scholar
  24. 24.
    Vestal, M. L.; Blakley, C. R.; Ryan, P. W.; Futrell, J. H. Rev. Sci. Instrum. 1976, 47, 15.CrossRefGoogle Scholar
  25. 25.
    Futrell, J. H.; Miller, C. D. Rev. Sci. Instrum. 1966, 37, 1521.CrossRefGoogle Scholar
  26. 26.
    Heddle, D. W. O. J. Phys. E 1971, 4, 981.CrossRefGoogle Scholar
  27. 27.
    (a) Wannier, G. H. Phys. Rev. 1951, 83, 281. (b) Wannier, G. H. Bell Syst. Tech. J. 1953, 32, 170.CrossRefGoogle Scholar
  28. 28.
    Albritton, D. L.; Dotan, I.; Lindinger, W.; McFarland, M.; Tellinghuisen, J.; Fehsenfeld, F. C. J. Chem. Phys. 1977, 66, 410.CrossRefGoogle Scholar
  29. 29.
    Smith, D.; Adams, N. G. Phys. Rev. A 1981, 23, 2327.CrossRefGoogle Scholar
  30. 30.
    Lindinger, W.; Albritton, D. L. J. Chem. Phys. 1975, 62, 3517.CrossRefGoogle Scholar
  31. 31.
    Ellis, H. W.; Pai, R. Y.; McDaniel, E. W.; Mason, E. A.; Viehland, L. A. Atomic Data Nucl. Data Tables 1976, 17, 177; 1978, 22, 179; 1984, 31, 113.CrossRefGoogle Scholar
  32. 32.
    Twiddy, N. D.; Mohebati, A.; Tichy, M. Int. J. Mass Spectrom. Ion Processes 1986, 74, 251.CrossRefGoogle Scholar
  33. 33.
    Rowe, B. R.; Fahey, D. W.; Fehsenfeld, F. C.; Albritton, D. L. J. Chem. Phys. 1980, 73, 194.CrossRefGoogle Scholar
  34. 34.
    Helm, H.; Elford, M. T. J. Phys. B 1978, 11, 3939.Google Scholar
  35. 35.
    Kemper, P. R.; Bowers, M. T. J. Am. Chem. Soc. (in press).Google Scholar
  36. 36.
    Stori, H.; Alge, E.; Villinger, H.; Egger, F.; Lindinger, W. Int. J. Mass Spectrom. Ion Processes 1979, 30, 263.CrossRefGoogle Scholar
  37. 37.
    Bolden, R. C.; Hemworth, R. S.; Shaw, M. J.; Twiddy, N. D. J. Phys. B 1970, 3, 45.CrossRefGoogle Scholar
  38. 38.
    Shul, R. J.; Upschulte, B. L.; Passarella, R.; Keesee, R. G.; Castleman, A. W., Jr. J. Phys. Chem. 1987, 91, 2556.CrossRefGoogle Scholar
  39. 39.
    Adams, N. G.; Bohme, D. K.; Dunkin, D. B.; Fehsenfeld, F. C. J. Chem. Phys. 1970, 52, 1951.CrossRefGoogle Scholar
  40. 40.
    Adams, N. G.; Smith, D. Int. J. Mass Spectrom. Ion Processes 1976, 21, 349.CrossRefGoogle Scholar
  41. 41.
    Doran, I.; Lindinger, W. J. Chem. Phys. 1982, 76, 4972.CrossRefGoogle Scholar
  42. 42.
    Raksit, A. B.; Stock, H. M. P.; Waveing, D. P.; Twiddy, N. D. J. Phys. B 1978, 11, 4237.CrossRefGoogle Scholar
  43. 43.
    Kemper, P. R.; van Koppen, P. A. M.; Bowers, M. T., to be published.Google Scholar
  44. 44.
    Tonkyn, R.; Ronan, M.; Weisshaar, J. J. Phys. Chem. 1988, 92, 92.CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 1990

Authors and Affiliations

  • Paul R. Kemper
    • 1
  • Michael T. Bowers
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaSanta Barbara

Personalised recommendations