Skip to main content
Log in

Fluorescent carbon dots for sensing applications: a review

  • Review
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Luminescent carbon dots (CDs) are important class of nanomaterials with fantastic photoluminescence (PL) properties, great biocompatibility, extraordinary solubility in water, minimal expense, and so on. There are many methods for their preparation and they are mainly classed into two groups, top-down and bottom-up approaches. In order to understand the origin of fluorescence in quantum CDs, three mechanisms have been proposed namely molecular state, surface state, and quantum confinement phenomenon. Fluorescent CDs have significant application in the fields of biochemical sensing, photocatalysis, bioimaging, delivery of drugs, and other related fields. In this review article the application of quantum dots as detecting component, for the sensing of different targets, has been summed up. In fact, the detection of several analytes including, anions, cations, small molecules, polymers, cells, and microscopic organisms has been discoursed. Moreover, the future aspects of CDs as detecting resources have been explored.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. P. Tian, L. Tang, K.S. Teng, S.P. Lau, Graphene quantum dots from chemistry to applications. Mater. Today Chem. 10, 221–258 (2018). https://doi.org/10.1016/j.mtchem.2018.09.007

    Article  CAS  Google Scholar 

  2. S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang, The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 8(2), 355–381 (2015). https://doi.org/10.1007/s12274-014-0644-3

    Article  CAS  Google Scholar 

  3. C.E. Probst, P. Zrazhevskiy, V. Bagalkot, X. Gao, Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv. Drug Deliv. Rev. 65(5), 703–718 (2013). https://doi.org/10.1016/j.addr.2012.09.036

    Article  CAS  PubMed  Google Scholar 

  4. A.R. Clapp et al., Two-photon excitation of quantum-dot-based fluorescence resonance energy transfer and its applications. Adv. Mater. 19(15), 1921–1926 (2007). https://doi.org/10.1002/adma.200602036

    Article  CAS  Google Scholar 

  5. H. Li et al., Determination of aspirin using functionalized cadmium-tellurium quantum dots as a fluorescence probe. Anal. Lett. 48(7), 1117–1127 (2015). https://doi.org/10.1080/00032719.2014.974055

    Article  CAS  Google Scholar 

  6. D.R. Larson et al., Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300(5624), 1434–1436 (2003). https://doi.org/10.1126/science.1083780

    Article  PubMed  Google Scholar 

  7. R. Liu, D. Wu, S. Liu, K. Koynov, W. Knoll, Q. Li, An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chem. Int. Ed. 48(25), 4598–4601 (2009). https://doi.org/10.1002/anie.200900652

    Article  CAS  Google Scholar 

  8. J. Geys et al., Acute toxicity and prothrombotic effects of Quantum dots: impact of surface charge. Environ. Health Perspect. 116(12), 1607–1613 (2008). https://doi.org/10.1289/ehp.11566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. S.L. Hu, K.Y. Niu, J. Sun, J. Yang, N.Q. Zhao, X.W. Du, One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem. 19(4), 484–488 (2009). https://doi.org/10.1039/b812943f

    Article  CAS  Google Scholar 

  10. H. Liu, T. Ye, C. Mao, Fluorescent carbon nanoparticles derived from candle soot. Angew Chen Int Ed 46(34), 6473–6475 (2007). https://doi.org/10.1002/anie.200701271

    Article  CAS  Google Scholar 

  11. X. Xu et al., Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126(40), 12736–12737 (2004). https://doi.org/10.1021/ja040082h

    Article  CAS  PubMed  Google Scholar 

  12. D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. Int. Ed. 47(2), 373–376 (2008). https://doi.org/10.1002/anie.200702721

    Article  Google Scholar 

  13. J. Peng et al., Graphene quantum dots derived from carbon fibers. Nano Lett. 12(2), 844–849 (2012). https://doi.org/10.1021/nl2038979

    Article  CAS  PubMed  Google Scholar 

  14. R. Ye et al., Coal as an abundant source of graphene quantum dots. Nat. Commun. 4, 2–7 (2013). https://doi.org/10.1038/ncomms3943

    Article  CAS  Google Scholar 

  15. J. Zhou et al., An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc. 129(4), 744–745 (2007). https://doi.org/10.1021/ja0669070

    Article  CAS  PubMed  Google Scholar 

  16. Q.L. Zhao, Z.L. Zhang, B.H. Huang, J. Peng, M. Zhang, D.W. Pang, Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun. 41, 5116–5118 (2008). https://doi.org/10.1039/b812420e

    Article  CAS  Google Scholar 

  17. L. Bao et al., Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv. Mater. 23(48), 5801–5806 (2011). https://doi.org/10.1002/adma.201102866

    Article  CAS  PubMed  Google Scholar 

  18. Y. Li et al., An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 23(6), 776–780 (2011). https://doi.org/10.1002/adma.201003819

    Article  CAS  PubMed  Google Scholar 

  19. Z.C. Yang et al., Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chem. Commun. 47(42), 11615–11617 (2011). https://doi.org/10.1039/c1cc14860e

    Article  CAS  Google Scholar 

  20. S. Sahu, B. Behera, T.K. Maiti, S. Mohapatra, Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem. Commun. 48(70), 8835–8837 (2012). https://doi.org/10.1039/c2cc33796g

    Article  CAS  Google Scholar 

  21. H. Zhu, X. Wang, Y. Li, Z. Wang, X. Yang, Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. (2009). https://doi.org/10.1039/b907612c

    Article  Google Scholar 

  22. A.B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, M. Karakassides, E.P. Giannelis, Surface functionalized carbogenic quantum dots. Small 4(4), 455–458 (2008). https://doi.org/10.1002/smll.200700578

    Article  CAS  PubMed  Google Scholar 

  23. X. Guo, C.F. Wang, Z.Y. Yu, L. Chen, S. Chen, Facile access to versatile fluorescent carbon dots toward light-emitting diodes. Chem. Commun. 48(21), 2692–2694 (2012). https://doi.org/10.1039/c2cc17769b

    Article  CAS  Google Scholar 

  24. S.S. Liu, C.F. Wang, C.X. Li, J. Wang, L.H. Mao, S. Chen, Hair-derived carbon dots toward versatile multidimensional fluorescent materials. J. Mater. Chem. C 2(32), 6477–6483 (2014). https://doi.org/10.1039/c4tc00636d

    Article  CAS  Google Scholar 

  25. H.G. Baldovi, S. Valencia, M. Alvaro, A.M. Asiri, H. Garcia, Highly fluorescent C-dots obtained by pyrolysis of quaternary ammonium ions trapped in all-silica ITQ-29 zeolite. Nanoscale 7(5), 1744–1752 (2015). https://doi.org/10.1039/c4nr05295a

    Article  CAS  PubMed  Google Scholar 

  26. S. Qu et al., Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering. Adv. Mater. 28(18), 3516–3521 (2016). https://doi.org/10.1002/adma.201504891

    Article  CAS  PubMed  Google Scholar 

  27. D. Pan, J. Zhang, Z. Li, C. Wu, X. Yan, M. Wu, Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles. Chem. Commun. 46(21), 3681–3683 (2010). https://doi.org/10.1039/c000114g

    Article  CAS  Google Scholar 

  28. X. Teng et al., Green synthesis of nitrogen-doped carbon dots from konjac flour with ‘off-on’ fluorescence by Fe3+ and l-lysine for bioimaging. J Mater Chem B 2(29), 4631–4639 (2014). https://doi.org/10.1039/c4tb00368c

    Article  CAS  PubMed  Google Scholar 

  29. H. Lu, C. Li, H. Wang, X. Wang, S. Xu, Biomass-derived sulfur, nitrogen co-doped carbon dots for colorimetric and fluorescent dual mode detection of silver(I) and cell imaging. ACS Omega 4(25), 21500–21508 (2019). https://doi.org/10.1021/acsomega.9b03198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, Boston, 2006)

    Book  Google Scholar 

  31. Y. Guo, L. Zhang, S. Zhang, Y. Yang, X. Chen, M. Zhang, Fluorescent carbon nanoparticles for the fluorescent detection of metal ions. Biosens. Bioelectron. 63, 61–71 (2015). https://doi.org/10.1016/j.bios.2014.07.018

    Article  CAS  PubMed  Google Scholar 

  32. M. Formica, V. Fusi, L. Giorgi, M. Micheloni, New fluorescent chemosensors for metal ions in solution. Coord. Chem. Rev. 256(1–2), 170–192 (2012). https://doi.org/10.1016/j.ccr.2011.09.010

    Article  CAS  Google Scholar 

  33. W. Lu et al., Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for rapid, sensitive, and selective detection of mercury(II). Anal. Chem. 84(12), 5351–5357 (2012). https://doi.org/10.1021/ac3007939

    Article  CAS  PubMed  Google Scholar 

  34. P.J. Wang et al., The selectivity of the carboxylate groups terminated carbon dots switched by buffer solutions for the detection of multi-metal ions. Sens. Actuators B Chem. 240, 941–948 (2016). https://doi.org/10.1016/j.snb.2016.09.068

    Article  CAS  Google Scholar 

  35. X. Qin, W. Lu, A.M. Asiri, A.O. Al-youbi, X. Sun, Microwave-assisted rapid green synthesis of photoluminescent carbon nanodots from flour and their applications for sensitive and selective detection of mercury(I ) ions. Sens. Actuators B. Chem. 184, 156–162 (2013). https://doi.org/10.1016/j.snb.2013.04.079

    Article  CAS  Google Scholar 

  36. S. Xu, Y. Liu, H. Yang, K. Zhao, J. Li, A. Deng, Fluorescent nitrogen and sulfur co-doped carbon dots from casein and their applications for sensitive detection of Hg2+ and biothiols and cellular imaging. Anal. Chim. Acta 964, 150–160 (2017). https://doi.org/10.1016/j.aca.2017.01.037

    Article  CAS  PubMed  Google Scholar 

  37. C. Wang, D. Sun, K. Zhuo, H. Zhang, J. Wang, Simple and green synthesis of nitrogen-, sulfur-, and phosphorus-co-doped carbon dots with tunable luminescence properties and sensing application. RSC Adv. 4, 54060–54065 (2014). https://doi.org/10.1039/C4RA10885J

    Article  CAS  Google Scholar 

  38. J. Zong et al., Carbon dots as fluorescent probes for ‘off-on’ detection of Cu2+ and l-cysteine in aqueous solution. Biosens. Bioelectron. 51, 330–335 (2014). https://doi.org/10.1016/j.bios.2013.07.042

    Article  CAS  PubMed  Google Scholar 

  39. Q. Qu, A. Zhu, X. Shao, Y. Tian, Development of a carbon quantum dots-based fluorescent Cu2+ probe suitable for living cell imaging. Chem. Commun. 48(44), 5473–5475 (2012). https://doi.org/10.1039/c2cc31000g

    Article  CAS  Google Scholar 

  40. A. Zhu, Q. Qu, X. Shao, B. Kong, Y. Tian, Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions. Angew. Chem. Int. Ed. Engl. 51(29), 7185–7189 (2012). https://doi.org/10.1002/anie.201109089

    Article  CAS  PubMed  Google Scholar 

  41. S. Zhu et al., Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. 52(14), 3953–3957 (2013). https://doi.org/10.1002/ange.201300519

    Article  CAS  Google Scholar 

  42. J. Ahn, Y. Song, J.E. Kwon, J. Woo, H. Kim, Characterization of food waste-driven carbon dot focusing on chemical structural, electron relaxation behavior and Fe3+ selective sensing. Data Brief 25, 104038 (2019). https://doi.org/10.1016/j.dib.2019.104038

    Article  PubMed  PubMed Central  Google Scholar 

  43. Y. Wang, Q. Chang, S. Hu, Chemical carbon dots with concentration-tunable multicolored photoluminescence for simultaneous detection of Fe 3+ and Cu2+ ions. Sens. Actuators B Chem. 253, 928–933 (2017). https://doi.org/10.1016/j.snb.2017.07.031

    Article  CAS  Google Scholar 

  44. K. Chen, W. Qing, W. Hu, M. Lu, Y. Wang, X. Liu, “On-off-on fluorescent carbon dots from waste tea: their properties, antioxidant and selective detection of CrO2, ascorbic acid and l-cysteine in real samples”, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 213, 228–234 (2019). https://doi.org/10.1016/j.saa.2019.01.066

    Article  CAS  Google Scholar 

  45. D.A. Gupta, M.L. Desai, N.I. Malek, S.K. Kailasa, Fluorescence detection of Fe3+ ion using ultra-small fluorescent carbon dots derived from pineapple (Ananas comosus): development of miniaturized analytical method. J. Mol. Struct. 1216, 128343 (2020). https://doi.org/10.1016/j.molstruc.2020.128343

    Article  CAS  Google Scholar 

  46. Y. Hu, Z. Gao, J. Yang, H. Chen, L. Han, Environmentally benign conversion of waste polyethylene terephthalate to fluorescent carbon dots for ‘on-off-on’ sensing of ferric and pyrophosphate ions. J. Colloid Interface Sci. 538, 481–488 (2019). https://doi.org/10.1016/j.jcis.2018.12.016

    Article  CAS  PubMed  Google Scholar 

  47. P. Das et al., Waste chimney oil to nanolights: a low cost chemosensor for tracer metal detection in practical field and its polymer composite for multidimensional activity. J. Photochem. Photobiol. B Biol. 180(2017), 56–67 (2018). https://doi.org/10.1016/j.jphotobiol.2018.01.019

    Article  CAS  Google Scholar 

  48. A. Sachdev, P. Gopinath, Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. Analyst 140(12), 4260–4269 (2015). https://doi.org/10.1039/c5an00454c

    Article  CAS  PubMed  Google Scholar 

  49. M.N. Feleafel, Z.M. Mirdad, Hazard and effects of pollution by lead on vegetable crops. J. Agric. Environ. Ethics 26(3), 547–567 (2013). https://doi.org/10.1007/s10806-012-9403-1

    Article  Google Scholar 

  50. Y. Liu, Q. Zhou, Y. Yuan, Y. Wu, Hydrothermal synthesis of fluorescent carbon dots from sodium citrate and polyacrylamide and their highly selective detection of lead and pyrophosphate. Carbon 115, 550–560 (2017). https://doi.org/10.1016/j.carbon.2017.01.035

    Article  CAS  Google Scholar 

  51. X.W. Tan, A.N.B. Romainor, S.F. Chin, S.M. Ng, Carbon dots production via pyrolysis of sago waste as potential probe for metal ions sensing. J. Anal. Appl. Pyrolysis 105, 157–165 (2014). https://doi.org/10.1016/j.jaap.2013.11.001

    Article  CAS  Google Scholar 

  52. S. Ravi, M.K. Jayaraj, Sustainable carbon dots as ‘turn-off’ fluorescence sensor for highly sensitive Pb2+ detection. Emergent Mater. 3(1), 51–56 (2020). https://doi.org/10.1007/s42247-019-00068-y

    Article  Google Scholar 

  53. Z.L. Song et al., Biodegradable nanoprobe based on MnO2 nanoflowers and graphene quantum dots for near infrared fluorescence imaging of glutathione in living cells. Microchim. Acta 185(10), 1–8 (2018). https://doi.org/10.1007/s00604-018-3024-y

    Article  CAS  Google Scholar 

  54. X. Liu, T. Li, Q. Wu, J. Yi, G. Zhang, Microwave synthesis of carbon dots with multi-response using denatured proteins as carbon source. RSC Adv. 6(14), 11711–11718 (2016). https://doi.org/10.1039/C5RA23081K

    Article  CAS  Google Scholar 

  55. Y. Wu, X. Liu, Q. Wu, J. Yi, G. Zhang, Differentiation and Determination of Metal Ions Using Fluorescent Sensor Array Based on Carbon Nanodots. Sens. Actuators B Chem. 246, 680–685 (2017). https://doi.org/10.1016/j.snb.2017.02.132

    Article  CAS  Google Scholar 

  56. S.T. Yang et al., Carbon dots as nontoxic and high-performance fluorescence imaging agents. J. Phys. Chem. C 113(42), 18110–18114 (2009). https://doi.org/10.1021/jp9085969

    Article  CAS  Google Scholar 

  57. H.L. Zhao, F. Qiu, S.B. Jin, Q.C. Jiang, High work-hardening effect of the pure NiAl intermetallic compound fabricated by the combustion synthesis and hot pressing technique. Mater. Lett. 65(17–18), 2604–2606 (2011). https://doi.org/10.1016/j.matlet.2011.05.091

    Article  CAS  Google Scholar 

  58. J. Shen, Y. Zhu, X. Yang, C. Li, Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48(31), 3686–3699 (2012). https://doi.org/10.1039/c2cc00110a

    Article  CAS  Google Scholar 

  59. S.T. Yang et al., Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 131(32), 11308–11309 (2009). https://doi.org/10.1021/ja904843x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. H. Tao et al., In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 8(2), 281–290 (2012). https://doi.org/10.1002/smll.201101706

    Article  CAS  PubMed  Google Scholar 

  61. P. Huang et al., Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv. Mater. 24(37), 5104–5110 (2012). https://doi.org/10.1002/adma.201200650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Y. Choi et al., Highly biocompatible carbon nanodots for simultaneous bioimaging and targeted photodynamic therapy in vitro and in vivo. Adv. Funct. Mater. 24(37), 5781–5789 (2014). https://doi.org/10.1002/adfm.201400961

    Article  CAS  Google Scholar 

  63. W.Q. Li et al., Mitochondria-based aircraft carrier enhances in vivo imaging of carbon quantum dots and delivery of anticancer drug. Nanoscale 10(8), 3744–3752 (2018). https://doi.org/10.1039/c7nr08816g

    Article  CAS  PubMed  Google Scholar 

  64. Y. Lu, H. Hao, P. Liu, Y. Feng, J. Wang, Controllable synthesis of graphene quantum dots with tunable-photoluminescence controllable synthesis of graphene quantum dots with tunable-photoluminescence. IOP Conf. Ser.: Mater. Sci. Eng. 768(2), 022073 (2020). https://doi.org/10.1088/1757-899X/768/2/022073

    Article  CAS  Google Scholar 

  65. Y. Li et al., Synthesis of self-assembled spermidine-carbon quantum dots effective against multidrug-resistant bacteria. Adv. Healthc. Mater. 5(19), 2545–2554 (2016). https://doi.org/10.1002/adhm.201600297

    Article  CAS  PubMed  Google Scholar 

  66. J. Tang et al., Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging. Adv. Mater. 25(45), 6569–6574 (2013). https://doi.org/10.1002/adma.201303124

    Article  CAS  PubMed  Google Scholar 

  67. X.U. Yue, T. Chun-jing, H. Hong, S.U.N. Chao-qun, Z. Ya-kun, Y.E. Qun-feng, Green synthesis of fluorescent carbon quantum dots for detection of Hg2+. Chin. J. Anal. Chem. 42(9), 1252–1258 (2014). https://doi.org/10.1016/S1872-2040(14)60765-9

    Article  Google Scholar 

  68. D. Qu et al., Peering into water splitting mechanism of g-C3N4-carbon dots metal-free photocatalyst. Appl. Catal. B 227, 418–424 (2018)

    Article  CAS  Google Scholar 

  69. T. Feng, X. Ai, G. An, P. Yang, Y. Zhao, Charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 10(4), 4410–4420 (2016). https://doi.org/10.1021/acsnano.6b00043

    Article  CAS  PubMed  Google Scholar 

  70. B. Wang et al., Tunable amphiphilicity and multifunctional applications of ionic-liquid-modified carbon quantum dots. ACS Appl. Mater. Interfaces 7(12), 6919–6925 (2015). https://doi.org/10.1021/acsami.5b00758

    Article  CAS  PubMed  Google Scholar 

  71. U. Baruah, N. Gogoi, G. Majumdar, D. Chowdhury, β-Cyclodextrin and calix[4]arene-25,26,27,28-tetrol capped carbon dots for selective and sensitive detection of fluoride. Carbohydr. Polym. 117, 377–383 (2015). https://doi.org/10.1016/j.carbpol.2014.09.083

    Article  CAS  PubMed  Google Scholar 

  72. B. Yin et al., Green synthesis of carbon dots with down- and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst 138(21), 6551–6557 (2013). https://doi.org/10.1039/C3AN01003A

    Article  CAS  PubMed  Google Scholar 

  73. M. Xue, L. Zhang, M. Zou, C. Lan, Z. Zhan, S. Zhao, Nitrogen and sulfur co-doped carbon dots: a facile and green fluorescence probe for free chlorine. Sens. Actuators B Chem. 219, 50–56 (2015). https://doi.org/10.1016/j.snb.2015.05.021

    Article  CAS  Google Scholar 

  74. J. Hou et al., Sensitive detection of biothiols and histidine based on the recovered fl uorescence of the carbon quantum dots-Hg(II) system. Anal. Chim. Acta 859, 72–78 (2015). https://doi.org/10.1016/j.aca.2014.12.021

    Article  CAS  PubMed  Google Scholar 

  75. G.M. Yan, Acceptecrt. (Elsevier, Amsterdam, 2015)

  76. Y. Shi, Y. Pan, H. Zhang, Z. Zhang, M. Li, C. Yi, A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma. Biosens. Bioelectron. 56, 39–45 (2014). https://doi.org/10.1016/j.bios.2013.12.038

    Article  CAS  PubMed  Google Scholar 

  77. S. Hu, A. Trinchi, P. Atkin, I. Cole, Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. Angew. Chem. Int. Ed. 54(10), 2970–2974 (2015). https://doi.org/10.1002/anie.201411004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the persons who have supported them to perform out this report. Second, they would like to express their sincere appreciation to the supervisor, whose guidance and comments were valuable for them that motivate them so much.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdeep Kumar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhiman, R., Kumar, J. & Singh, M. Fluorescent carbon dots for sensing applications: a review. ANAL. SCI. 40, 1387–1396 (2024). https://doi.org/10.1007/s44211-024-00609-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-024-00609-4

Keywords

Navigation