Skip to main content
Log in

Application of on-line sample preconcentration by large-volume dual preconcentration by isotachophoresis and stacking (LDIS) on straight-channel microchips

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In this study, large-volume dual preconcentration by isotachophoresis and stacking (LDIS) which is an on-line sample preconcentration technique coupling large-volume sample stacking with an electroosmotic flow pump (LVSEP) with transient isotachophoresis (tITP) was applied to microchip electrophoresis (MCE) for improving both detection sensitivities and peak shapes. To realize LDIS in MCE, we investigated experimental procedures for injecting a short plug of a leading electrolyte (LE) solution into a straight microchannel without any sophisticated injector apparatus. We found that a short LE plug could be injected into a sample-filled straight-channel only by making the liquid level of the LE solution in an outlet reservoir higher than that in an inlet one. By applying a reversed-polarity voltage to the microchip, anionic analytes injected throughout the microchannel were first enriched by LVSEP, followed by tITP. Through the second preconcentration effect by tITP in LDIS, sensitivity enhancement factor (SEF) and asymmetry factor for a standard dye were improved from 878 and 0.62 to 1330 and 1.14, respectively, relative to those in conventional LVSEP. It should be noted that more viscous running buffer containing sieving polymers could be employed to the LDIS analysis, which was effective for improving the SEF and the separation efficiencies, especially for bio-polymeric compounds. Finally, LDIS was applied to the oligosaccharide and protein analyses in MCE, resulting in the SEFs of 1410 and ca. 50 for maltotriose and bovine milk casein, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The data supporting the findings of this study are available within the paper and its Supplementary Information files. Data will be made available on reasonable request.

Abbreviations

LDIS:

Large-volume dual preconcentration by isotachophoresis and stacking

LVSEP:

Large-volume sample stacking with an electroosmotic flow pump

tITP:

Transient isotachophoresis

LE:

Leading electrolyte

TE:

Terminating electrolyte

HPMC:

Hydroxypropyl (methyl cellulose)

BGE:

Background electrolyte

MCE:

Microchip electrophoresis

SEF:

Sensitivity enhancement factor

References

  1. R.L. Nouwairi, K.C. O’Connell, L.M. Gunnoe, J.P. Landers, Anal. Chem. (2021). https://doi.org/10.1021/acs.analchem.0c04596

    Article  PubMed  Google Scholar 

  2. B.M. De CastroCosta, S. Griveau, F. d’Orlye, F. Bedioui, J.A.F. da Silva, A. Varenne, Electrochim. Acta (2021). https://doi.org/10.1016/j.electacta.2021.138928

    Article  Google Scholar 

  3. E. Naghdi, G.E. Moran, M.E. Reinau, W. De Malsche, C. Neusüß, Electrophoresis (2023). https://doi.org/10.1002/elps.202200179

    Article  PubMed  Google Scholar 

  4. A.M. Zeid, A. Abdussalam, S. Hanif, S. Anjum, B. Lou, G. Xu, Electrophoresis (2023). https://doi.org/10.1002/elps.202200082

    Article  PubMed  Google Scholar 

  5. M. Jozanović, I. Pukleš, N. Sakač, E. Carrilho, A. Kilár, B. Matasović, M. Samardžić, M. Budetić, F. Kilár, TrAC. Trends Anal. Chem. (2023). https://doi.org/10.1016/j.trac.2023.117111

    Article  Google Scholar 

  6. V. Kašička, Electrophoresis (2024). https://doi.org/10.1002/elps.202300152

    Article  PubMed  Google Scholar 

  7. Y. He, H.K. Lee, Anal. Chem. (1999). https://doi.org/10.1021/ac981100e

    Article  PubMed  Google Scholar 

  8. T. Kawai, K. Sueyoshi, F. Kitagawa, K. Otsuka, Anal. Chem. (2010). https://doi.org/10.1021/ac1008145

    Article  PubMed  Google Scholar 

  9. F. Kitagawa, S. Nakagawara, I. Nukatsuka, Y. Hori, K. Sueyoshi, K. Otsuka, Anal. Sci. (2015). https://doi.org/10.2116/analsci.31.1171

    Article  PubMed  Google Scholar 

  10. F. Kitagawa, S. Kinami, Y. Takegawa, I. Nukatsuka, K. Sueyoshi, T. Kawai, K. Otsuka, Electrophoresis (2017). https://doi.org/10.1002/elps.201600184

    Article  PubMed  Google Scholar 

  11. F. Kitagawa, T. Ishiguro, M. Tateyama, I. Nukatsuka, K. Sueyoshi, T. Kawai, K. Otsuka, Electrophoresis (2017). https://doi.org/10.1002/elps.201700155

    Article  PubMed  Google Scholar 

  12. F. Kitagawa, Y. Niimiya, I. Nukatsuka, Chromatography (2021). https://doi.org/10.15583/jpchrom.2021.008

    Article  Google Scholar 

  13. F. Kitagawa, A. Hayashi, I. Nukatsuka, Chromatography (2022). https://doi.org/10.15583/jpchrom.2021.018

    Article  Google Scholar 

  14. F. Kitagawa, Y. Takahashi, I. Nukatsuka, Chromatography (2023). https://doi.org/10.15583/jpchrom.2023.019

    Article  Google Scholar 

  15. F. Kitagawa, T. Yonekura, I. Nukatsuka, Anal. Sci. (2024). https://doi.org/10.1007/s44211-023-00456-9

    Article  PubMed  Google Scholar 

  16. F. Kitagawa, Y. Soma, Chromatography (2022). https://doi.org/10.15583/jpchrom.2022.012

    Article  Google Scholar 

  17. S.C. Jacobson, R. Hergenroder, L.B. Koutny, R.J. Warmack, J.M. Ramsey, Anal. Chem. (1994). https://doi.org/10.1021/ac00079a028

    Article  Google Scholar 

  18. A.R. Timerbaev, T. Hirokawa, Electrophoresis (2006). https://doi.org/10.1002/elps.200500320

    Article  PubMed  Google Scholar 

  19. Z. Xu, A.R. Timerbaev, T. Hirokawa, J. Chromatogr. A (2009). https://doi.org/10.1016/j.chroma.2008.10.077

    Article  PubMed  Google Scholar 

  20. Z. Malá, P. Gebauer, TrAC. Trends Anal. Chem. (2023). https://doi.org/10.1016/j.trac.2022.116837

    Article  Google Scholar 

  21. T. Kawai, N. Ota, A. Imasato, Y. Shirasaki, K. Otsuka, Y. Tanaka, J. Chromatogr. A (2018). https://doi.org/10.1016/j.chroma.2018.06.034

    Article  PubMed  Google Scholar 

  22. T. Kawai, N. Ota, K. Okada, A. Imasato, Y. Owa, M. Morita, M. Tada, Y. Tanaka, Anal. Chem. (2019). https://doi.org/10.1021/acs.analchem.9b01578

    Article  PubMed  Google Scholar 

  23. M. Jabasini, Y. Murakami, N. Kaji, M. Tokeshi, Y. Baba, Biol. Pharm. Bull. (2006). https://doi.org/10.1248/bpb.29.595

    Article  PubMed  Google Scholar 

  24. S. Štěpánová, V. Kašička, J. Sep. Sci. (2017). https://doi.org/10.1002/jssc.201600962

    Article  PubMed  Google Scholar 

  25. M. Corredig, P.K. Nair, Y. Li, H. Eshpari, Z. Zhao, J. Dairy Sci. (2019). https://doi.org/10.3168/jds.2018-15943

    Article  PubMed  Google Scholar 

  26. M. Pesic, M. Barac, M. Vrvic, N. Ristic, O. Macej, S. Stanojevic, Food Chem. (2011). https://doi.org/10.1016/j.foodchem.2010.10.045

    Article  Google Scholar 

  27. R. Niki, S. Arima, Kagakutoseibutsu (1984). https://doi.org/10.1271/kagakutoseibutsu1962.22.219

    Article  Google Scholar 

  28. Y. Murase, H. Hiramoto, M. Kota, Reports of the Central Customs Laboratory (2017) https://www.customs.go.jp/ccl_search/e_info_search/foodstuffs/r_57_09_e.pdf

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP18K05162 and JP22K05149.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumihiko Kitagawa.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 157 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitagawa, F., Takahashi, K., Osanai, R. et al. Application of on-line sample preconcentration by large-volume dual preconcentration by isotachophoresis and stacking (LDIS) on straight-channel microchips. ANAL. SCI. (2024). https://doi.org/10.1007/s44211-024-00597-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44211-024-00597-5

Keywords

Navigation