Skip to main content
Log in

Removal and detoxification of iprodione in water using didodecyldimethylammonium bromide-montmorillonite organoclay and manganese dioxide

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Combination of organoclay sorption with manganese(IV) oxide (MnO2) catalyzed catechol oxidation was studied for the removal of a dicarboximide fungicide, iprodione, from water. Iprodion in water was sorbed on didodecyldimethylammonium bromide (DDAB)-modified montmorillonite (MT) organoclay and converted into the degraded product, 3,5-dichloroaniline (DCA). The degree of sorption increased by the modification with DDAB, because of the formation of a hydrophobic region for the incorporation of iprodione and negligibly interfered by coexisting MnO2. The half-life for the degradation of irodione in water at 25 °C was 7 days, whreas it reduced to 15 min in the organoclay. The activation energy, 65.4 ± 4.8 kJ mol−1, for the first-order reaction in the aqueous solution (pH 7.0) decreased to 43.9 ± 1.8 kJ mol−1 in the organoclay, indicating the catalytic activity of the organoclay that accelerates the hydrolysis reaction of iprodione. In the coexistence of appropriate amounts of MnO2 and catechol, the degraded product, DCA, reacted with oxidized products of catechol to form a water-insoluble precipitate and was successfully eliminated from water. The results obtained in the present study strongly suggest the applicability of the combined method of organoclay sorption method and MnO2-catalyzed oxidation for the diffusion control of toxic agrochemicals.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data obtained in this study can serve as basic data when laying soil to prevent the spread of sprayed pesticides.

References

  1. A. Ahmed, A. Shamsi, B. Bano, Deciphering the toxic effects of iprodione, a fungicide and malathion, an insecticide on thiol protease inhibitor isolated from yellow Indian mustard seeds. Environ. Toxicol. Pharmacol. 61, 52–60 (2018). https://doi.org/10.1016/j.etap.2018.05.019

    Article  CAS  PubMed  Google Scholar 

  2. M. Cong, S. He, J. Zhang, C. Luo, F. Zhu, Hormetic effects of mixtures of carbendazim and iprodione on the virulence of botrytis cinerea. Plant Dis. 103, 95–101 (2019). https://doi.org/10.1094/PDIS-05-18-0754-RE

    Article  CAS  PubMed  Google Scholar 

  3. Y. Wei, Y. Meng, Y. Huang, Z. Liu, K. Zhong, J. Ma, W. Zhang, Y. Li, H. Lu, Development toxicity and cardiotoxicity in zebrafish from exposure to iprodione. Chemosphere 263, 127860 (2021). https://doi.org/10.1016/j.chemosphere.2020.127860

    Article  CAS  PubMed  Google Scholar 

  4. L.E. Gray Jr., J. Ostby, J. Furr, C.J. Wolf, C. Lambright, L. Parks, D.N. Veeramachaneni, V. Wilson, M. Price, A. Hotchkiss, E. Orlando, L. Guillette, Effects of environmental antiandrogens on reproductive development in experimental animals. Hum. Reprod. Update 7, 248–264 (2001). https://doi.org/10.1093/humupd/7.3.248

    Article  CAS  PubMed  Google Scholar 

  5. P. Durand, G. Martin, A. Blondet, J. Gilleron, D. Carette, S. Janczarski, E. Christin, G. Pointis, M.H. Perrard, Effects of low doses of carbendazim or iprodione either separately or in mixture on the pubertal rat seminiferous epithelium: An ex vivo study. Toxicol. in Vitro 45, 366–373 (2017). https://doi.org/10.1016/j.tiv.2017.05.022

    Article  CAS  PubMed  Google Scholar 

  6. M. Leistra, A.M. Matser, Adsorption, transformation, and bioavailability of the fungicides carbendazim and iprodione in soil, alone and in combination. J. Environ. Sci. Health B. 39, 1–17 (2004). https://doi.org/10.1081/PFC-120027435

    Article  CAS  PubMed  Google Scholar 

  7. J. Strömqvist, N. Jarvis, Sorption, degradation and leaching of the fungicide iprodione in a golf green under Scandinavian conditions: measurements, modelling and risk assessment. Pest Manag. Sci. 61, 1168–1178 (2005). https://doi.org/10.1002/ps.1101

    Article  CAS  PubMed  Google Scholar 

  8. M. Oiwa, K. Yamaguchi, H. Hayashi, T. Saitoh, Rapid sorption of fenitrothion on didodecyldimethylammonium bromide-montmorillonite organoclay followed by the degradation into less toxic 3-methyl-4-nitrophenolate. J. Environ. Chem. Eng. 8, 104000 (2020). https://doi.org/10.1016/j.jece.2020.104000

    Article  CAS  Google Scholar 

  9. T. Saitoh, T. Shibayama, Removal and degradation of β-lactam antibiotics in water using didodecyldimethylammonium bromide-modified montmorillonite organoclay. J. Hazard. Mater. 317, 677–685 (2016). https://doi.org/10.1016/j.jhazmat.2016.06.003

    Article  CAS  PubMed  Google Scholar 

  10. S. Vasileiadis, E. Puglisi, E.S. Papadopoulou, G. Pertile, N. Suciu, R.A. Pappolla, M. Tourna, P.A. Karas, F. Papadimitriou, A. Kasiotakis, N. Ipsilanti, A. Ferrarini, S. Sułowicz, F. Fornasier, U. Menkissoglu-Spiroudi, G.W. Nicol, M. Trevisan, D.G. Karpouzas, Blame it on the metabolite: 3,5-Dichloroaniline rather than the parent compound is responsible for the decreasing diversity and function of soil microorganisms. Appl. Environ. Microbiol. 84, e01536-e1618 (2018). https://doi.org/10.1128/AEM.01536-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Q. Lai, X. Sun, L. Li, D. Li, M. Wang, H. Shi, Toxicity effects of procymidone, iprodione and their metabolite of 3,5-dichloroaniline to zebrafish. Chemosphere 272, 129577 (2021). https://doi.org/10.1016/j.chemosphere.2021.129577

    Article  CAS  PubMed  Google Scholar 

  12. A. Sarker, S.-H. Lee, S.-Y. Kwak, R. Nandi, J.-E. Kim, Comparative catalytic degradation of a metabolite 3,5-dichloroaniline derived from dicarboximide fungicide by laccase and MnO2 mediators. Ecotoxicol. Environ. Saf. 196, 110561 (2020). https://doi.org/10.1016/j.ecoenv.2020.110561

    Article  CAS  PubMed  Google Scholar 

  13. M.M.B. Simón, A.D.E. Cózar, L.M.P. Díez, Spectrophotometric determination of cationic surfactants in frozen and fresh squid by ion-pair formation with Methyl Orange. Analyst 115, 337–339 (1990). https://doi.org/10.1039/AN9901500337

    Article  Google Scholar 

  14. R.M.M. Brito, W.L.C. Vaz, Determination of the critical micelle concentration of surfactants using the fluorescent probe N-phenyl-1-naphthylamine. Anal. Biochem. 152, 250–255 (1986). https://doi.org/10.1016/0003-2697(86)90406-9

    Article  CAS  PubMed  Google Scholar 

  15. T. Saitoh, K. Taguchi, M. Hiraide, Evaluation of hydrophobic properties of sodium dodecylsulfate/γ-alumina admicelles based on fluorescence spectra of N-phenyl-1-naphthylamine. Anal. Chim. Acta 454, 203–208 (2002). https://doi.org/10.1016/S0003-2670(01)01575-6

    Article  CAS  Google Scholar 

  16. T. Saitoh, T. Kondo, M. Hiraide, Concentration of chlorophenols in water to dialkylated cationic surfactant-silica gel admicelles. J. Chromatogr. A 1164, 40–47 (2007). https://doi.org/10.1016/j.chroma.2007.07.021

    Article  CAS  PubMed  Google Scholar 

  17. W.L. Klotz, M.R. Schure, J.P. Foley, Determination of octanol-water partition coefficients of pesticides by microemulsion electrokinetic chromatography. J. Chromatogr. A 930, 145–154 (2001). https://doi.org/10.1016/S0021-9673(01)01171-2

    Article  CAS  PubMed  Google Scholar 

  18. A. Bonnechère, V. Hanot, R. Jolie, M. Hendrickx, C. Bragard, T. Bedoret, J.V. Loco, Effect of household and industrial processing on levels of five pesticide residues and two degradation products in spinach. Food Control 25, 397–406 (2012). https://doi.org/10.1016/j.foodcont.2011.11.010

    Article  CAS  Google Scholar 

  19. J.G. Weers, D.R. Scheuing, Structure/performance relationships in monoalkyl/dialkyl cationic surfactant mixtures. J. Colloid Interface Sci. 145, 563–580 (1991). https://doi.org/10.1016/0021-9797(91)90386-M

    Article  CAS  Google Scholar 

  20. A. Caria, O. Regev, A. Khan, Surfactant-polymer interactions: Phase diagram and fusion of vesicle in the didodecyldimethylammonium bromide-poly(ethylene oxide)-water system. J. Colloid Interface Sci. 200, 19–30 (1998). https://doi.org/10.1006/jcis.1997.5310

    Article  CAS  Google Scholar 

  21. Z.E. Proverbio, P.C. Schulz, J.E. Puig, Aggregation of the aqueous dodecyltrimethylammonium bromide-didodecyldimethylammonium bromide system at low concentration. Colloid Polym. Sci. 280, 1045–1052 (2002). https://doi.org/10.1007/s00396-002-0731-y

    Article  CAS  Google Scholar 

  22. J.C. Villedieu, A. de Savignac, J.P. Calmon, Kinetics and mechanisms of hydrolysis of dicarboximide fungicides in micellar media. J. Agric. Food Chem. 43, 1948–1953 (1995). https://doi.org/10.1021/jf00055a035

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a JSPS KAKENHI (19J20799).

Funding

The funding has been received from Japan Society for the Promotion of Science with Grant no. 19J20799.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Saitoh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thao, N.T.T., Oiwa, M., Hayashi, H. et al. Removal and detoxification of iprodione in water using didodecyldimethylammonium bromide-montmorillonite organoclay and manganese dioxide. ANAL. SCI. (2024). https://doi.org/10.1007/s44211-024-00576-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44211-024-00576-w

Keywords

Navigation