Skip to main content
Log in

Evaluation of the deteriorating effects of microbial primary metabolites on silk fibres

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The silk biodegradation process remains unclear and requires elucidation with advanced analytical tools. To address this challenge, the role of microbial primary metabolites in the deterioration of ancient silk was investigated using metabolomics and proteomics techniques in this work. The oxalic and palmitic acids were separately identified as the most abundant organic and fatty acid metabolites for silk-fabric deterioration via metabolomics. Proteomics showed that oxalic acid accelerated the degradation of silk proteins, revealing changes at the molecular level in silk. A high concentration of oxalic acid promoted the dissolution of peptides by activating the cleavage activity of various amino acids on the molecular chain of silk protein. Palmitic acid formed sedimentary particulate matter with peptides solubilised from silk proteins, indicating the possibility that traces of ancient-silk proteins remained in the fatty acids. The work presented new techniques and concepts for studying the degradation of historical fabrics and contributed to the proposal of effective measures to prevent microbial attack on silk.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author upon reasonable request.

References

  1. X.W. Sun, J. Jia, P.H. Xu, J.L. Ni, W.H. Shi, B. Li, J. Cult. Herit. 62, 78–89 (2023)

    Article  Google Scholar 

  2. Y.X. Gong, Z. Li, J.A. Hu, G.Z. Zhou, G.X. Xu, W.M. Yang, J.X. Zhang, Polym. Degrad. Stabil. 196, 8 (2022)

    Article  Google Scholar 

  3. J.L. Wang, J. Guan, N. Hawkins, F. Vollrath, J.R. Soc, Interface 15, 11 (2018)

    Google Scholar 

  4. L. Li, D.C. Gong, Z.Y. Yao, J. Wang, Polym. Degrad. Stabil. 169, 7 (2019)

    Article  Google Scholar 

  5. R. Dang, F.H. Zhang, D. Yang, W.L. Guo, G. Liu, J. Cult. Herit. 45, 249–253 (2020)

    Article  Google Scholar 

  6. Z.H. Wei, Z.C. Feng, H.J. Tan, Herit. Sci. 11, 10 (2023)

    Article  Google Scholar 

  7. J.F.H. Li, Silk 48, 8–11 (2011)

    CAS  Google Scholar 

  8. L. Jiang, C.K. Wu, L. Yao, Q.X. Dong, G.H. Wu, J. Appl. Polym. Sci. 140, 15 (2023)

    Google Scholar 

  9. X.Y. Luo, W.T. Ma, J.Q. Wu, J.P. Geng, X.Y. Li, X.Y. Li, Y.P. Du, Spectrosc. Spectr. Anal. 32, 921–924 (2012)

    CAS  Google Scholar 

  10. R. Rajkhowa, L.J. Wang, J.R. Kanwar, X.G. Wang, J. Appl. Polym. Sci. 119, 1339–1347 (2011)

    Article  CAS  Google Scholar 

  11. Z. Ming, M. M. R. Khan, H. Morikawa and M. Miura, Suzhou, Peoples R China, (2007).

  12. J. Kaur, R. Rajkhowa, T. Afrin, T. Tsuzuki, X.G. Wang, Biopolymers 101, 237–245 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. C. Solazzo, Conserv. Patrim. https://doi.org/10.14568/cp2018031 (2019)

    Article  Google Scholar 

  14. J.C. Gu, C.F. Xu, M.L. Li, B.Y. Chen, Y.T. Shang, H.L. Zheng, Y. Zuou, Z.W. Hu, Z.Q. Peng, B. Wang, Anal. Sci. 35, 175–180 (2019)

    Article  CAS  PubMed  Google Scholar 

  15. C. Solazzo, J.M. Dyer, S. Deb-Choudhury, S. Clerens, P. Wyeth, Photochem. Photobiol. 88, 1217–1226 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. R.R. Chen, M.Z. Hu, H.L. Zheng, H. Yang, L. Zhou, Y. Zhou, Z.Q. Peng, Z.W. Hu, B. Wang, Anal. Chem. 92, 2435–2442 (2020)

    Article  CAS  PubMed  Google Scholar 

  17. I. Brzozowska, A. Bogdanowicz, P. Szczesny, U. Zielenkiewicz, A. Laudy, Int. Biodeterior. Biodegrad. 131, 78–87 (2018)

    Article  CAS  Google Scholar 

  18. B.W. Wang, C.S. Zhu, Y.L. Hu, B.J. Zhang, J.L. Wang, Sci. Total. Environ. 883, 14 (2023)

    Google Scholar 

  19. L.D. Pan, C.M. Ding, Y.F. Deng, H. Chen, H.L. Yang, B.Y. Wang, Y. Zhou, B. Wang, Anal. Methods 15, 5380–5389 (2023)

    Article  CAS  PubMed  Google Scholar 

  20. L.X. Gu, Y.L. Chen, Q.T. Wang, X.J. Li, K.X. Mi, H.T. Deng, J. Proteome Res. 14, 4441–4449 (2015)

    Article  CAS  PubMed  Google Scholar 

  21. L. Patiny, A. Borel, J. Chem. Inf. Model. 53, 1223–1228 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. E. Fahy, M. Sud, D. Cotter, S. Subramaniam, Nucleic Acids Res. 35, W606–W612 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  23. C.A. Smith, G. O’Maille, E.J. Want, C. Qin, S.A. Trauger, T.R. Brandon, D.E. Custodio, R. Abagyan, G. Siuzdak, Ther. Drug Monit. 27, 747–751 (2005)

    Article  CAS  PubMed  Google Scholar 

  24. H.E. Pence, A. Williams, J. Chem. Educ. 87, 1123–1124 (2010)

    Article  CAS  Google Scholar 

  25. Y. Kim, T. Yoon, W.B. Park, S. Na, J. Mech. Behav. Biomed. Mater. 140, 7 (2023)

    Article  Google Scholar 

  26. X.M. Zhang, I.V. Berghe, P. Wyeth, J. Cult. Herit. 12, 408–411 (2011)

    Article  Google Scholar 

  27. R. Bomba, W. Kwiatkowski, A. Sanchez-Ferrer, R. Riek, J. Greenwald, Biophys. J. 115, 2336–2347 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. D.C. Fernandez-Remolar, D. Gomez-Ortiz, P. Malmberg, T. Huang, Y. Shen, A. Angles, R. Amils, Microorganisms 9, 35 (2021)

    Article  Google Scholar 

  29. R. Ciuraru, M. Ward, M. Mendez, S. Gosselin, N. Visez, D. Petitprez, J. Atmos. Chem. 70, 341–355 (2013)

    Article  CAS  Google Scholar 

  30. E.F. Afanasyeva, V.N. Syryamina, M. De Zotti, F. Formaggio, C. Toniolo, S.A. Dzuba, Biochim. Biophys. Acta-Biomembr. 2019, 524–531 (1861)

    Google Scholar 

  31. I. Haralampiev, M. Mertens, R. Schwarzer, A. Herrmann, R. Volkmer, P. Wessig, P. Muller, Angew. Chem.-Int. Edit. 54, 323–326 (2015)

    Article  CAS  Google Scholar 

  32. M. Joseph, R. Nagaraj, J. Biol. Chem. 270, 16749–16755 (1995)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52273096), Special Funds from the Administration of Culture Heritage of Zhejiang Province (2020012; 2023012) and Zhejiang Sci-Tech University Shengzhou Innovation Research Institute (SYY2023C000004).

Funding

National Natural Science Foundation of China (52273096); Special Funds from the Administration of Culture Heritage of Zhejiang Province (2020012, 2023012); Zhejiang Sci-Tech University Shengzhou Innovation Research Institute (SYY2023C000004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, C., Pan, L., Li, Y. et al. Evaluation of the deteriorating effects of microbial primary metabolites on silk fibres. ANAL. SCI. (2024). https://doi.org/10.1007/s44211-024-00568-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44211-024-00568-w

Keywords

Navigation