Skip to main content
Log in

Fluorescent immunoassay for chloramphenicol based on the label-free polyadenine-mediated spherical nucleic acids triggered signal amplification

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A fluorescent immunosorbent assay incorporating signal amplification away from the surface of spherical nucleic acid (SNA) was developed for the detection of chloramphenicol (CAP). Through the conjugation of antibodies and poly-adenine (polyA) DNA onto the surface of gold nanoparticles (AuNPs), the fabrication of the nano-immunoprobe was achieved in a more straightforward and cost-effective manner. Moreover, a strategy utilizing the hybridization chain reaction (HCR) in the amplification step was devised, with particular attention given to the enzyme inhibition associated with SNA. The results demonstrated good performance on CAP detection with a linear range of 0.01–5 ng/L with a detection limit of 0.005 ng/L. The significance of this work mainly lies in the polyA-SNA-based immunoprobe and the thoughtful design to prevent enzyme inhibition.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. L.M. Nguyen, N.T.T. Nguyen, T.T.T. Nguyen, T.T. Nguyen, D.T.C. Nguyen, T.V. Tran, Environ. Chem. Lett. (2022). https://doi.org/10.1007/s10311-022-01416-x

    Article  PubMed  PubMed Central  Google Scholar 

  2. Y. Sun, G.I.N. Waterhouse, X. Qiao, J. Xiao, Z. Xu, Food Chem. (2023). https://doi.org/10.1016/j.foodchem.2023.135434

    Article  PubMed  Google Scholar 

  3. S. Walker, C.J.M. Diaper, R. Bowman, G. Sweeney, D.V. Seal, C.M. Kirkness, Eye (1998). https://doi.org/10.1038/eye.1998.221

    Article  PubMed  Google Scholar 

  4. S. Kuroda, J. Tateishi, S. Otsuki, Folia Psychiatr. Neurol. Jpn. 29, 39 (1975). https://doi.org/10.1111/j.1440-1819.1975.tb02321.x

    Article  CAS  PubMed  Google Scholar 

  5. J.B. Warshaw, Pediatr. Res. (1970). https://doi.org/10.1203/00006450-197009000-00035

    Article  PubMed  Google Scholar 

  6. R.J. Shakila, R. Saravanakumar, S.A.P. Vyla, G. Jeyasekaran, Curr. Res. Food Sci. 8, 515 (2007). https://doi.org/10.1016/j.ifset.2007.03.002

    Article  CAS  Google Scholar 

  7. S. Akter Mou, R. Islam, M. Shoeb, N. Nahar, Food Sci. Nutr. 9, 5670 (2021). https://doi.org/10.1002/fsn3.2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. R. Banerjee, D. Ghosh, S.N. Bhaduri, R. Biswas, P. Biswas, ChemistrySelect (2023). https://doi.org/10.1002/slct.202202433

    Article  Google Scholar 

  9. C. Liu, B. Li, M. Liu, S. Mao, Sens. Actuators B Chem. (2022). https://doi.org/10.1016/j.snb.2022.132383

    Article  PubMed  PubMed Central  Google Scholar 

  10. D.V. Sotnikov, L.V. Barshevskaya, A.V. Bartosh, A.V. Zherdev, B.B. Dzantiev, Biosensors (2022). https://www.mdpi.com/2079-6374/12/5/343.

  11. S.-W. Wu, M.-Y. Wang, B.-H. Liu, F.-Y. Yu, Food Chem. (2022). https://doi.org/10.1016/j.foodchem.2022.133351

    Article  PubMed  Google Scholar 

  12. P. Sang, G. Lu, D. Yu, X. Song, Y. Guo, Y. Xie, W. Yao, H. Qian, Z. Hu, J. Agric. Food Chem. (2022). https://doi.org/10.1021/acs.jafc.2c03833

    Article  PubMed  PubMed Central  Google Scholar 

  13. Y. Song, W. Song, X. Lan, W. Cai, D. Jiang, Aggregate (2022). https://doi.org/10.1002/agt2.120

    Article  PubMed  Google Scholar 

  14. Y. Hao, Y. Li, L. Song, Z. Deng, J. Am. Chem. Soc. (2021). https://doi.org/10.1021/jacs.1c00568

    Article  PubMed  PubMed Central  Google Scholar 

  15. B. Liu, J. Liu, Matter (2019). https://doi.org/10.1016/j.matt.2019.08.008

    Article  Google Scholar 

  16. C. Li, L. Guo, X. Sang, X. Jiang, H. Wang, P. Qin, L. Huang, Talanta (2023). https://doi.org/10.1016/j.talanta.2023.124453

    Article  PubMed  PubMed Central  Google Scholar 

  17. J. Xu, Q. Tang, R. Zhang, H. Chen, B.L. Khoo, X. Zhang, Y. Chen, H. Yan, J. Li, H. Shao, L. Liu, J. Pharm. Anal. (2022). https://doi.org/10.1016/j.jpha.2022.05.009

    Article  PubMed  PubMed Central  Google Scholar 

  18. Y.-Y. Li, H.-D. Li, W.-K. Fang, D. Liu, M.-H. Liu, M.-Q. Zheng, L.-L. Zhang, H. Yu, H.-W. Tang, ACS Sens. (2022). https://doi.org/10.1021/acssensors.2c00516

    Article  PubMed  PubMed Central  Google Scholar 

  19. L. Bai, T. Ye, D. Zhu, D. Sun, S. Zhang, Y. Lu, M. Yuan, H. Cao, L. Hao, X. Wu, F. Yin, F. Xu, Luminescence (2022). https://doi.org/10.1002/bio.4380

    Article  PubMed  Google Scholar 

  20. T. Ye, D. Zhu, L. Hao, M. Yuan, H. Cao, X. Wu, F. Yin, F. Xu, Microchim. Acta (2022). https://doi.org/10.1007/s00604-022-05235-3

    Article  Google Scholar 

  21. K.-R. Zhao, L. Wang, P.-F. Liu, X.-M. Hang, H.-Y. Wang, S.-Y. Ye, Z.-J. Liu, G.-X. Liang, Sens. Actuators B Chem. (2021). https://doi.org/10.1016/j.snb.2021.130485

    Article  PubMed  PubMed Central  Google Scholar 

  22. C. Li, H. Wang, R. Wei, J. Ren, M. Zhou, C. Yan, L. Huang, Sens. Actuators B Chem. (2023). https://doi.org/10.1016/j.snb.2023.133361

    Article  PubMed  PubMed Central  Google Scholar 

  23. F. Liu, R. Chen, W. Song, L. Li, C. Lei, Z. Nie, Anal. Chem. (2021). https://doi.org/10.1021/acs.analchem.0c04894

    Article  PubMed  PubMed Central  Google Scholar 

  24. L. Yuan, D. Ji, Q. Fu, M. Hu, Nanomaterials (2022). https://www.mdpi.com/2079-4991/12/13/2196

  25. Y. Guo, P. Sang, G. Lu, X. Yang, Y. Xie, Z. Hu, H. Qian, W. Yao, Food Chem. (2023). https://doi.org/10.1016/j.foodchem.2022.135174

    Article  PubMed  Google Scholar 

  26. P. Sang, Z. Hu, Y. Cheng, H. Yu, F. Yang, Y. Xie, W. Yao, Y. Guo, H. Qian, Sens. Actuators B Chem. (2021). https://doi.org/10.1016/j.snb.2021.130564

    Article  Google Scholar 

  27. J.C. Hsiao, T. Buryska, E. Kim, P.D. Howes, A.J. de Mello, Nanoscale (2021). https://doi.org/10.1039/D0NR08668A

    Article  PubMed  Google Scholar 

  28. X. Qu, D. Zhu, G. Yao, S. Su, J. Chao, H. Liu, X. Zuo, L. Wang, J. Shi, L. Wang, W. Huang, H. Pei, C. Fan, Angew. Chem. Int. Ed. Engl. (2017). https://doi.org/10.1002/anie.201611777

    Article  PubMed  PubMed Central  Google Scholar 

  29. W. Sheng, N. Huang, Y. Liu, B. Zhang, W. Zhang, S. Wang, Food Anal. Methods (2020). https://doi.org/10.1007/s12161-020-01820-5

    Article  Google Scholar 

  30. S. Chen, Y. Liu, F. Zhai, M. Jia, Food Chem. (2022). https://doi.org/10.1016/j.foodchem.2021.130648

    Article  PubMed  Google Scholar 

  31. J. Wang, Q. Wang, Y. Zheng, T. Peng, K. Yao, S. Xie, X. Zhang, X. Xia, J. Li, H. Jiang, Food Agric. Immunol. (2018). https://doi.org/10.1080/09540105.2017.1359498

    Article  Google Scholar 

  32. S. Liu, J. Bai, Y. Huo, B. Ning, Y. Peng, S. Li, D. Han, W. Kang, Z. Gao, Biosens. Bioelectron. (2020). https://doi.org/10.1016/j.bios.2019.111801

    Article  PubMed  PubMed Central  Google Scholar 

  33. Y. Duan, L. Wang, Z. Gao, H. Wang, H. Zhang, H. Li, Talanta (2017). https://doi.org/10.1016/j.talanta.2016.12.090

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Jiangsu Provincial Health Commission Research Programme (No. M2021078), Jiangsu Provincial Health Commission Scientific Research Fund Schistosomiasis-Endemic-Parasitic Disease Prevention Project (x202314), Jiangsu Province Key Research and Development Program (BE2022837).

Author information

Authors and Affiliations

Authors

Contributions

Weiwei Shen: Investigation, experiment, writing—original draft. Yahui Guo: Writing—review and editing, supervision.

Corresponding author

Correspondence to Yahui Guo.

Ethics declarations

Conflict of interest

There are no competing financial interests or personal relationships in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 179 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, W., Hong, Q., Huo, X. et al. Fluorescent immunoassay for chloramphenicol based on the label-free polyadenine-mediated spherical nucleic acids triggered signal amplification. ANAL. SCI. (2024). https://doi.org/10.1007/s44211-024-00565-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44211-024-00565-z

Keywords

Navigation