Skip to main content
Log in

Facile synthesis of amino-modified magnetic covalent organic framework for the efficient extraction and determination of anionic azo dyes in carbonated beverages

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

A Correction to this article was published on 07 May 2024

This article has been updated

Abstract

In this work, a novel magnetic covalent organic framework (COF (TpPa-NH2) @ Fe3O4) was prepared via two step by simple solvent method for the extraction of anionic azo dye residues in food. The as-prepared COF (TpPa-NH2) @ Fe3O4 nanocomposite was characterised by scanning electron microscope, transmission electron microscope, Fourier transform-infrared spectroscopy, X-ray diffraction and vibrating sample magnetometer. Before high-performance liquid chromatography with ultraviolet detection (HPLC-UV) determination, it was used as magnetic adsorbent for magnetic solid-phase extraction (MSPE) to extract and pre-concentrate three anionic azo dyes in carbonated beverage samples. The several key extraction and desorption parameters affecting the extraction recovery rate were investigated, including extraction time, pH of the solution, amount of material, adsorption time, elution solvent, pH of elution solvent, type of elution solvent, elution volume and elution time. Under optimised conditions, this method has good linearity between 5 and 500 μg L–1 (correlation coefficient > 0.9986). The limit of detection was 2.3–3.4 μg L–1. The recoveries of the samples were between 87.5 and 96.9%, and the relative standard deviation lower than 4.6%. The developed method has broad application prospects for the analysis of anionic azo dyes in carbonated beverages.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Change history

References

  1. X.T. Zhang, J. Zhang, W.Q. Li, Y.X. Yang, P.G. Qin, X.B. Zhang, M.H. Lu, Food Addit. Contam. Part A 35(11), 2099–2110 (2018). https://doi.org/10.1080/19440049.2018.1526415

    Article  CAS  Google Scholar 

  2. S. Dey, B.H. Nagababu, Food Chem. Adv. 1, 100019 (2022). https://doi.org/10.1016/j.focha.2022.100019

    Article  Google Scholar 

  3. A. Downham, P. Collins, Int. J. Food Sci. Technol. 35(1), 5–22 (2000). https://doi.org/10.1016/j.focha.2022.100019

    Article  CAS  Google Scholar 

  4. S.I. Kaya, A. Cetinkaya, S.A. Ozkan, Food Chem. Toxicol. 156, 112524 (2021). https://doi.org/10.1016/j.fct.2021.112524

    Article  CAS  PubMed  Google Scholar 

  5. S.N. Okafor, W. Obonga, M.A. Ezeokonkwo, J. Nurudeen, U. Orovwigho, J. Ahiabuike, Pharm. Biosci. J. (2016). https://doi.org/10.20510/ukjpb/4/i4/110639

    Article  Google Scholar 

  6. M. Ramesh, A. Muthuraman, (Academic Press, 2018), pp. 1–28. https://doi.org/10.1016/B978-0-12-811518-3.00001-6

  7. D. McCann, A. Barrett, A. Cooper, D. Crumpler, L. Dalen, K. Grimshaw, E. Kitchin, K. Lok, L. Porteous, E. Prince et al., Lancet 370(9598), 1560–1567 (2007). https://doi.org/10.1016/S0140-6736(07)61306-3

    Article  CAS  PubMed  Google Scholar 

  8. X.R. Wan, H.R. Dai, H.Y. Zhang, H. Yang, F. Li, Q. Xu, Sci. Total. Environ. 868, 161596 (2022). https://doi.org/10.1016/j.microc.2022.107824

    Article  CAS  Google Scholar 

  9. G.L. Dotto, T.R.S. Cadaval, L.A.A. Pinto, Process Biochem. 47(9), 1335–1343 (2012). https://doi.org/10.1016/j.procbio.2012.04.029

    Article  CAS  Google Scholar 

  10. Q.S. Zhang, X. Jiang, A.M. Kirillov, Y.W. Zhang, M.Y. Hu, W. Liu, L.Z. Yang, R. Fang, W.S. Liu, ACS Sustain. Chem. Eng. 7(3), 3203–3212 (2019). https://doi.org/10.1021/acssuschemeng.8b05146

    Article  CAS  Google Scholar 

  11. X. Feng, X.S. Ding, D.L. Jiang, Chem. Soc. Rev. 41(18), 6010–6022 (2012). https://doi.org/10.1039/C2CS35157A

    Article  CAS  PubMed  Google Scholar 

  12. J.R. Wang, J.J. Feng, Y.J. Lian, X. Sun, M.L. Wang, M. Sun, Food Chem. 405, 134818 (2022). https://doi.org/10.1016/j.foodchem.2022.134818

    Article  CAS  Google Scholar 

  13. P.J. Waller, F. Gándara, O.M. Yaghi, Acc. Chem. Res. 48(12), 3053–3063 (2015). https://doi.org/10.1021/acs.accounts.5b00369

    Article  CAS  PubMed  Google Scholar 

  14. T.T. Yang, C. Tian, X. Yan, R.Y. Xiao, Z. Lin, Environ. Sci. Nano 8(5), 1469–1480 (2021). https://doi.org/10.1039/D1EN00059D

    Article  CAS  Google Scholar 

  15. Q. Zhu, X. Wang, R. Clowes, P. Cui, L.J. Chen, M.A. Little, A.I. Cooper, J. Am. Chem. Soc. 142(39), 16842–16848 (2020). https://doi.org/10.1021/jacs.0c07732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Li, J.P. Ma, G.G. Wu, J.H. Li, X.Y. Wang, L.X. Chen, J. Hazard. Mater. 424, 127687 (2022). https://doi.org/10.1016/j.jhazmat.2021.127687

    Article  CAS  PubMed  Google Scholar 

  17. Z. Chen, K. Wang, X.N. Hu, P.Z. Shi, Z.Y. Guo, H.B. Zhan, ACS Appl. Mater. Interfaces 13(1), 1145–1151 (2020). https://doi.org/10.1021/acsami.0c16116

    Article  CAS  PubMed  Google Scholar 

  18. W. Tan, X.H. Wu, W.R. Liu, F.G. Ye, S.L. Zhao, ACS Appl. Mater. Interfaces 13(3), 4352–4363 (2021). https://doi.org/10.1021/acsami.0c18902

    Article  CAS  PubMed  Google Scholar 

  19. L.C. Wang, Y.Q. Tao, J.J. Wang, M. Tian, S.C. Liu, T. Quan, L.J. Yang, D.D. Wang, X. Li, D. Gao, Anal. Chim. Acta 1227, 340329 (2022). https://doi.org/10.1016/j.aca.2022.340329

    Article  CAS  PubMed  Google Scholar 

  20. S.P. Guan, H. Wu, L. Yang, Z.L. Wang, J.M. Wu, J. Sep. Sci. 43(19), 3775–3784 (2020). https://doi.org/10.1002/jssc.202000616

    Article  CAS  PubMed  Google Scholar 

  21. H. Wu, S.P. Guan, L. Yang, D.R. Li, Anal. Lab. (2021). https://doi.org/10.13595/j.cnki.issn1000-0720.2021.012301

    Article  Google Scholar 

  22. W. Sun, Q. Xu, Q.L. Liu, T.L. Wang, Z.X. Liu, J. Chromatogr. A 1690, 463777 (2023). https://doi.org/10.1016/j.chroma.2023.463777

    Article  CAS  PubMed  Google Scholar 

  23. J.L. Du, H. Wu, X. Jing, Y.H. Yu, Z.S. Yan, J.H. Zhang, Foods 11(19), 3130 (2022). https://doi.org/10.3390/foods11193130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. G.Y. Li, L.L. Yao, Y.R. Jiang, K.L. Huang, P. Ding, Colloids Surf. A Physicochem. Eng. Aspects 320(1–3), 11–18 (2018). https://doi.org/10.1016/j.colsurfa.2008.01.017

    Article  CAS  Google Scholar 

  25. L. You, K. Xu, G. Ding, X. Shi, J. Li, S. Wang, J. Wang, J. Mol. Liq. 320, 114456 (2020). https://doi.org/10.1016/j.molliq.2020.114456

    Article  CAS  Google Scholar 

  26. J.L. Liu, W.C. Qian, J.Z. Guo, Y. Shen, B. Li, Biores. Technol. 320, 124374 (2020). https://doi.org/10.1016/j.biortech.2020.124374

    Article  CAS  Google Scholar 

  27. H. Molavi, A. Shojaei, A. Pourghaderi, J. Colloid Interface Sci. 524, 52–64 (2018). https://doi.org/10.1016/j.jcis.2018.03.088

    Article  CAS  PubMed  Google Scholar 

  28. S. Ghorai, A.K. Sarkar, A.B. Panda, S. Pal, Biores. Technol. 144, 485–491 (2013). https://doi.org/10.1016/j.biortech.2013.06.108

    Article  CAS  Google Scholar 

  29. X.R. Shi, X.L. Chen, Y.L. Hao, L. Li, H.J. Xu, M.M. Wang, J. Chromatogr. B 1086, 146–152 (2018). https://doi.org/10.1016/j.jchromb.2018.04.022

    Article  CAS  Google Scholar 

  30. R. Darabi, M. Shabani-Nooshabadi, Food Chem. 339, 127841 (2021). https://doi.org/10.1016/j.foodchem.2020.127841

    Article  CAS  PubMed  Google Scholar 

  31. E. Kılınç, K.S. Çelik, H. Bilgetekin, Food Chem. 242, 533–537 (2018). https://doi.org/10.1016/j.foodchem.2017.09.039

    Article  CAS  PubMed  Google Scholar 

  32. M. Hemmati, M. Rajabi, Food Chem. 286, 185–190 (2019). https://doi.org/10.1016/j.foodchem.2019.01.197

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Project of Shanxi Advanced Permanent Magnet Materials and Technology Provincial and Ministerial Collaborative Innovation Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuliang Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no financial or non-financial conflict of interest to declare.

Additional information

The original online version of this article was revised: With the authors’ decision to cancel Open Access the copyright of the article changed on 19 April 2024 to ©The Author(s), under exclusive licence to The Japan Society for Analytical Chemistry 2024.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, S., Wu, H., Lin, W. et al. Facile synthesis of amino-modified magnetic covalent organic framework for the efficient extraction and determination of anionic azo dyes in carbonated beverages. ANAL. SCI. (2024). https://doi.org/10.1007/s44211-024-00561-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44211-024-00561-3

Keywords

Navigation