Skip to main content
Log in

Detection of lard adulteration in 3 kinds of vegetable oils by liquid chromatography–mass spectrometry with porous graphite carbon column

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

A Correction to this article was published on 09 May 2024

This article has been updated

Abstract

Liquid chromatography‒mass spectrometry employing porous graphite carbon columns and an n-octane-isopropanol mobile phase was utilized for the separation of triacylglycerols (TAGs) in various edible oils, aiming to identify lard adulteration in soybean, corn, and sunflower seed oils. Experiments were conducted using a Hypercarb column (2.1 mm × 100 mm, 5 µm) and an n-octane-isopropanol (70:30, V/V) mobile phase at a flow rate of 0.25 mL· min−1 and a column temperature of 60 °C. Detection was achieved through atmospheric pressure chemical ionization-mass spectrometry. Analysis of diverse edible oil samples revealed that oils of the same type shared similar TAG compositions, while different types exhibited distinct TAG profiles. Distinct variations in triglyceride composition were observed across different edible oils. Based on liquid chromatography‒mass spectrometry analysis, the characteristic component 1-stearic acid-2-palmitic acid-3-oleic acid glyceride (SPO), which may also include PSO, was identified in lard through principal component analysis and orthogonal partial least squares discriminant analysis. This component served as a marker for detecting as low as 0.1% lard adulteration in soybean, corn, and sunflower seed oils. The technique offers a precise and effective approach for the identification of lard adulteration in these edible oils.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Change history

References

  1. Y.B. Che Man, A. Rohman, T.S.T. Mansor, J. Am. Oil Chem. Soc. 88, 187 (2011)

    Article  CAS  Google Scholar 

  2. K.A. Al-Rashood, E.M. Abdel-Moety, A. Rauf, R.R. Abou-Shaaban, K.I. Al-Khamis, J. Liq. Chromatogr. R. T. 18, 2661 (1995)

    Article  CAS  Google Scholar 

  3. W.M. Cao, X.H. Sun, F.X. Chen, B. Xue, X.G. Wang, China. Oils. Fats. 37, 1 (2012)

    Google Scholar 

  4. F. Munir, S.G. Musharraf, S.T.H. Sherazi, M.I. Malik, M.I. Bhanger, Turk. J. Chem. 43, 1098 (2019)

    Article  CAS  Google Scholar 

  5. A. Rohman, Y.B.C. Man, Food Res. Int. 43, 886 (2010)

    Article  CAS  Google Scholar 

  6. N. Vanstone, A. Moore, P. Martos, S. Neethirajan, Food Qual. Saf. 2, 189 (2018)

    Article  CAS  Google Scholar 

  7. A.A. Christy, S. Kasemsumran, Y. Du, Y. Ozaki, Anal. Sci. 20, 935 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. Z. Hai, J. Wang, Sens. Actuat. B: Chem. 119, 449 (2006)

    Article  CAS  Google Scholar 

  9. Z. Hai, J. Wang, Eur. J. Lipid. Sci. Tech. 108, 116 (2006)

    Article  CAS  Google Scholar 

  10. M. Hajimahmoodi, Y. Vander Heyden, N. Sadeghi, B. Jannat, M.R. Oveisi, S. Shahbazian, Talanta 66, 1108 (2005)

    Article  CAS  PubMed  Google Scholar 

  11. C.R. Xing, X.Y. Yuan, X.Y. Wu, X.L. Shao, J. Yuan, W.J. Yan, LWT-Food Sci Technol. 108, 437 (2019)

    Article  CAS  Google Scholar 

  12. J. Jin, L.X. Wang, J.P. Chen, Y.Z. Tian, L.L. Zou, B.Q. Zhang, S.Q. Wang, X.F. Wang, Chin. J. Chromatogr. 30, 1100 (2012)

    Article  CAS  Google Scholar 

  13. S.C. Cunha, M. Oliveira, Food Chem. 95, 518 (2006)

    Article  CAS  Google Scholar 

  14. N. Carranco, M. Farrés-Cebrián, J. Saurina, O. Núñez, Foods. 7, 44 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  15. L.X. Wang, J. Jin, S.Q. Wang, X.F. Wang, Y.Z. Tian, J.P. Chen, Chin. J. Chromatogr. 30, 1094 (2012)

    Article  CAS  Google Scholar 

  16. R.R. Catharino, R. Haddad, L.G. Cabrini, I.B.S. Cunha, A.C.H.F. Saway, M.N. Eberlin, Anal. Chem. 77, 7429 (2005)

    Article  CAS  PubMed  Google Scholar 

  17. I.M. Lorenzo, J.L.P. Pavón, M.E.F. Laespada, C.G. Pinto, B.M. Cordero, J. Chromatogr. A 945, 221 (2002)

    Article  Google Scholar 

  18. K.I. Poulli, G.A. Mousdis, C.A. Georgiou, Anal. Bioanal. Chem. 386, 1571 (2006)

    Article  CAS  PubMed  Google Scholar 

  19. D. Šmejkalová, A. Piccolo, Food Chem. 118, 153 (2010)

    Article  Google Scholar 

  20. A. Cataldo, E. Piuzzi, G. Cannazza, E. De Benedetto, L. Tarricone, Measurement 43, 1031 (2010)

    Article  Google Scholar 

  21. S. Indelicato, D. Bongiorno, R. Pitonzo, V.D. Stefano, V. Calabrese, S. Indelicato, G. Avellone, J. Chromatogr. A 1515, 1 (2017)

    Article  CAS  PubMed  Google Scholar 

  22. P. Dugo, T. Kumm, A. Fazio, G. Dugo, L. Mondello, J. Sep. Sci. 29, 567 (2006)

    Article  CAS  PubMed  Google Scholar 

  23. Y.X. Zeng, P. Araujo, Z.Y. Du, T.T. Nguyen, L. Frøyland, B. Grung, Talanta 82, 1261 (2010)

    Article  CAS  PubMed  Google Scholar 

  24. X.P. Wang, P.W. Li, X. Liu, Y.Q. Liu, Q. Zhang, L.X. Zhang, B. Matthäus, Eur. J. Lipid. Sci. Tech. 121, 1900029 (2019)

    Article  Google Scholar 

  25. F. Wei, N. Hu, X. Lv, X.Y. Dong, H. Chen, J. Chromatogr. A 1404, 60 (2015)

    Article  CAS  PubMed  Google Scholar 

  26. R. He, X.L. Shan, F.Y. Dong, X. Xu, Chin. J. Anal. Chem. 43, 1377 (2015)

    Article  CAS  Google Scholar 

  27. S.D. Zhang, C. Gong, Y. Lu, X. Xu, J. Am. Oil Chem. Soc. 95, 1253 (2018)

    Article  CAS  Google Scholar 

  28. X.T. Lu, S.D. Zhang, C. Gong, X. Xu, Chin. J. Anal. Chem. 48, 1084 (2020)

    CAS  Google Scholar 

  29. K. Xiao, C. Gong, Q.S. Guo, X. Xu, Chin. J. Anal. Chem. 48, 802 (2020)

    CAS  Google Scholar 

  30. M. Buchgraber, F. Ulberth, H. Emons, E. Anklam, Eur. J. Lipid. Sci. Tech. 106(621–648), 1438 (2004)

    Google Scholar 

  31. R.A. Coleman, D.P. Lee, Prog. Lipid Res. 43, 134 (2004)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (No. 31671928), the Natural Science Foundation of Shanghai (15ZR1440800), and Science and Technology Development Foundation of Shanghai Institute of Technology (KJFZ2023-11).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Xu Xu, Xiang-Ting Lu, Can Gong, Methodology: Can Gong, Xiang-Ting Lu, Xu Xu, Investigation: Xiang-Ting Lu, Can Gong, Shi-Ding Zhang, Kun Xiao, Funding acquisition: Xu Xu. Software; Xiang-Ting Lu, Can Gong, Supervision: Xu Xu, Writing—original draft: Can Gong, Xiang-Ting Lu, Writing—review & editing: Can Gong, Xu Xu.

Corresponding author

Correspondence to Xu Xu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 470 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, C., Lu, XT., Zhang, SD. et al. Detection of lard adulteration in 3 kinds of vegetable oils by liquid chromatography–mass spectrometry with porous graphite carbon column. ANAL. SCI. (2024). https://doi.org/10.1007/s44211-024-00560-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44211-024-00560-4

Keywords

Navigation