Skip to main content
Log in

Unveiling the vitamin E profile in rice bran extracellular vesicles: evaluation of extraction and preparation methods

  • Special Issue: Original Paper
  • Novel Analytical Technologies Contributing to Clinical and Pharmaceutical Research Fields
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EVs) are nanoscale entities secreted by various cells, encapsulating various nucleic acids and proteins that play important roles in cellular activities. Although rice bran is known for its richness in phytochemicals such as tocopherol and tocotrienol, the distribution of these compounds within EVs has not been extensively studied. The objective of this study was to detect and analyze the presence of vitamin E in EVs extracted from rice bran. We investigated several EV extraction methods, including rotation, vortex mixing, and ultrasonication, followed by post-extraction techniques such as ultracentrifugation, ultrafiltration, and lyophilization. Vitamin E in the EVs from rice bran was analyzed using LC-FLD. This study is the first to identify tocopherol and tocotrienol in rice bran-derived EVs. Our results indicate that ultracentrifugation followed by rotation is the most effective method for the preparation of rice bran-derived EVs. Notably, the vitamin E profile in EVs varies depending on the preparation method and differs from that in rice bran extracts. The pronounced presence of vitamin E in EVs suggests unique pharmacokinetics and underscores the potential of EVs as carriers for drug delivery systems. This study not only confirms the presence of vitamin E in EVs, but also underscores the potential of EVs and their phytochemical content for therapeutic applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EVs:

Extracellular vesicles

T3s:

Tocotrienols

Tocs:

Tocopherols

NTA:

Nano-tracking analysis

LC-FLD:

Liquid chromatography with fluorescence detector

SEM:

Scanning electron microscopy

References

  1. C.A. Rohrer, T.J. Siebenmorgen, Biosyst. Eng. (2004). https://doi.org/10.1016/j.biosystemseng.2004.04.009

    Article  Google Scholar 

  2. E. Serbinova, V. Kagan, D. Han, L. Packer, Free Radic. Biol. Med. (1991). https://doi.org/10.1016/0891-5849(91)90033-y

    Article  PubMed  Google Scholar 

  3. K. Nesaretnam, N. Guthrie, A.F. Chambers, K.K. Carroll, Lipids (1995). https://doi.org/10.1007/BF02536615

    Article  PubMed  Google Scholar 

  4. K. Nesaretnam, R. Ambra, K.R. Selvaduray, A. Radhakrishnan, K. Reimann, G. Razak, F. Virgili, Lipids (2004). https://doi.org/10.1007/s11745-004-1251-1

    Article  PubMed  Google Scholar 

  5. A.A. Qureshi, W.C. Burger, D.M. Peterson, C.E. Elson, J. Biol. Chem. 261, 10544–10550 (1986)

    Article  CAS  PubMed  Google Scholar 

  6. M. Yáñez-Mó, P.R.-M. Siljander, Z. Andreu, A.B. Zavec, F.E. Borràs, E.I. Buzas, K. Buzas, E. Casal, F. Cappello, J. Carvalho, E. Colás, A. Cordeiro-da Silva, S. Fais, J.M. Falcon-Perez, I.M. Ghobrial, B. Giebel, M. Gimona, M. Graner, I. Gursel, M. Gursel, N.H.H. Heegaard, A. Hendrix, P. Kierulf, K. Kokubun, M. Kosanovic, V. Kralj-Iglic, E.-M. Krämer-Albers, S. Laitinen, C. Lässer, T. Lener, E. Ligeti, A. Linē, G. Lipps, A. Llorente, J. Lötvall, M. Manček-Keber, A. Marcilla, M. Mittelbrunn, I. Nazarenko, E.N.M. Nolte-’t Hoen, T.A. Nyman, L. O’Driscoll, M. Olivan, C. Oliveira, É. Pállinger, H.A. Del Portillo, J. Reventós, M. Rigau, E. Rohde, M. Sammar, F. Sánchez-Madrid, N. Santarém, K. Schallmoser, M.S. Ostenfeld, W. Stoorvogel, R. Stukelj, S.G. Van der Grein, M.H. Vasconcelos, M.H.M. Wauben, O. De Wever, J Extracell Vesicles (2015). https://doi.org/10.3402/jev.v4.27066.

  7. C. Lei, Y. Teng, L. He, M. Sayed, J. Mu, F. Xu, X. Zhang, A. Kumar, K. Sundaram, M.K. Sriwastva, L. Zhang, S.-Y. Chen, W. Feng, S. Zhang, J. Yan, J.W. Park, M.L. Merchant, X. Zhang, H.-G. Zhang, iScience (2021). https://doi.org/10.1016/j.isci.2021.102511

    Article  PubMed  PubMed Central  Google Scholar 

  8. B. Wang, X. Zhuang, Z.-B. Deng, H. Jiang, J. Mu, Q. Wang, X. Xiang, H. Guo, L. Zhang, G. Dryden, J. Yan, D. Miller, H.-G. Zhang, Mol. Ther. (2014). https://doi.org/10.1038/mt.2013.190

    Article  PubMed  PubMed Central  Google Scholar 

  9. T. Umezu, M. Takanashi, Y. Murakami, S.-I. Ohno, K. Kanekura, K. Sudo, K. Nagamine, S. Takeuchi, T. Ochiya, M. Kuroda, Mol. Ther. Methods Clin. Dev. (2021). https://doi.org/10.1016/j.omtm.2021.03.006

    Article  PubMed  PubMed Central  Google Scholar 

  10. Y. Akao, Y. Kuranaga, K. Heishima, N. Sugito, K. Morikawa, Y. Ito, T. Soga, T. Ito, J. Nutr. Biochem. (2022). https://doi.org/10.1016/j.jnutbio.2021.108922

    Article  PubMed  Google Scholar 

  11. S. Ju, J. Mu, T. Dokland, X. Zhuang, Q. Wang, H. Jiang, X. Xiang, Z.-B. Deng, B. Wang, L. Zhang, M. Roth, R. Welti, J. Mobley, Y. Jun, D. Miller, H.-G. Zhang, Mol. Ther. (2013). https://doi.org/10.1038/mt.2013.64

    Article  PubMed  PubMed Central  Google Scholar 

  12. J. Mu, X. Zhuang, Q. Wang, H. Jiang, Z.-B. Deng, B. Wang, L. Zhang, S. Kakar, Y. Jun, D. Miller, H.-G. Zhang, Mol. Nutr. Food Res. (2014). https://doi.org/10.1002/mnfr.201300729

    Article  PubMed  PubMed Central  Google Scholar 

  13. L. Alvarez-Erviti, Y. Seow, H. Yin, C. Betts, S. Lakhal, M.J.A. Wood, Nat. Biotechnol. (2011). https://doi.org/10.1038/nbt.1807

    Article  PubMed  Google Scholar 

  14. Q. Wang, X. Zhuang, J. Mu, Z.-B. Deng, H. Jiang, L. Zhang, X. Xiang, B. Wang, J. Yan, D. Miller, H.-G. Zhang, Nat. Commun. (2013). https://doi.org/10.1038/ncomms2886

    Article  PubMed  PubMed Central  Google Scholar 

  15. A. Cheruvanky, H. Zhou, T. Pisitkun, J.B. Kopp, M.A. Knepper, P.S.T. Yuen, R.A. Star, Am. J. Physiol. Renal Physiol (2007). https://doi.org/10.1152/ajprenal.00434.2006

    Article  PubMed  Google Scholar 

  16. N. Zarovni, A. Corrado, P. Guazzi, D. Zocco, E. Lari, G. Radano, J. Muhhina, C. Fondelli, J. Gavrilova, A. Chiesi, Methods (2015). https://doi.org/10.1016/j.ymeth.2015.05.028

    Article  PubMed  Google Scholar 

  17. J. Folch, M. Lees, G.H.S. Stanley, J. Biol. Chem. (1957). https://doi.org/10.1016/s0021-9258(18)64849-5

    Article  PubMed  Google Scholar 

  18. P. Sookwong, K. Nakagawa, K. Murata, Y. Kojima, T. Miyazawa, J. Agric. Food Chem. (2007). https://doi.org/10.1021/jf0621572

    Article  PubMed  Google Scholar 

  19. J. Kim, S. Li, S. Zhang, J. Wang, Asian J. Pharm. Sci. (2022). https://doi.org/10.1016/j.ajps.2021.05.006

    Article  PubMed  PubMed Central  Google Scholar 

  20. S.K. Channavajjhala, M. Rossato, F. Morandini, A. Castagna, F. Pizzolo, F. Bazzoni, O. Olivieri, Clin. Chem. Lab. Med. (2014). https://doi.org/10.1515/cclm-2013-0562

    Article  PubMed  Google Scholar 

  21. T. Yamashita, Y. Takahashi, M. Nishikawa, Y. Takakura, Eur. J. Pharm. Biopharm. (2016). https://doi.org/10.1016/j.ejpb.2015.10.017

    Article  PubMed  Google Scholar 

  22. S. Hagl, D. Berressem, B. Bruns, N. Sus, J. Frank, G.P. Eckert, Molecules (2015). https://doi.org/10.3390/molecules200916524

    Article  PubMed  PubMed Central  Google Scholar 

  23. J. Atkinson, R.F. Epand, R.M. Epand, Free Radic. Biol. Med. (2008). https://doi.org/10.1016/j.freeradbiomed.2007.11.010

    Article  PubMed  Google Scholar 

  24. A.M. Abraham, S. Wiemann, G. Ambreen, J. Zhou, K. Engelhardt, J. Brüßler, U. Bakowsky, S.-M. Li, R. Mandic, G. Pocsfalvi, C.M. Keck, Pharmaceutics (2022). https://doi.org/10.3390/pharmaceutics14030476

    Article  PubMed  PubMed Central  Google Scholar 

  25. R. Anusha, S. Priya, Mol. Nutr. Food Res. (2022). https://doi.org/10.1002/mnfr.202200142

    Article  PubMed  Google Scholar 

  26. M.S.A. Mutalib, H. Khaza’ai, K.W.J. Wahle, Food Res. Int. (2003). https://doi.org/10.1016/S0963-9969(02)00173-4

    Article  Google Scholar 

  27. A. Theriault, Q. Wang, A. Gapor, K. Adeli, Arterioscler. Thromb. Vasc. Biol. (1999). https://doi.org/10.1161/01.atv.19.3.704

    Article  PubMed  Google Scholar 

  28. T. Nakatomi, M. Itaya-Takahashi, Y. Horikoshi, N. Shimizu, I.S. Parida, M. Jutanom, T. Eitsuka, Y. Tanaka, J.-M. Zingg, T. Matsura, K. Nakagawa, Sci. Rep. (2023). https://doi.org/10.1038/s41598-023-34584-z

    Article  PubMed  PubMed Central  Google Scholar 

  29. Y. Saito, Y. Yoshida, K. Nishio, M. Hayakawa, E. Niki, Ann. N. Y. Acad. Sci. (2004). https://doi.org/10.1196/annals.1331.047

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiro Esaka.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest. Akio Iio is an employee and received a salary in Clea Japan Inc., but has no financial relationships to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takasu, S., Watanabe, R., Sugito, N. et al. Unveiling the vitamin E profile in rice bran extracellular vesicles: evaluation of extraction and preparation methods. ANAL. SCI. 40, 935–941 (2024). https://doi.org/10.1007/s44211-024-00550-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-024-00550-6

Keywords

Navigation