Skip to main content
Log in

Quantification of serine residue stereoinversion in a short peptide by reversed-phase high-performance liquid chromatography: analysis of mechanisms promoting serine stereoinversion

  • Special Issue: Original Paper
  • Novel Analytical Technologies Contributing to Clinical and Pharmaceutical Research Fields
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Stereoinversion of Ser residues within proteins, which has been identified in long-lived proteins, influences protein function. To quantify the stereoinversion of Ser residues, we investigated the potential adaptation of our direct peptide analytical method originally established for analyzing the isomerization of asparaginyl/aspartyl residues. Peptide pairs containing l-Ser or d-Ser residues with lengths of four or five residues were synthesized. Separation conditions for these peptide pairs were systematically examined by precisely adjusting the pH of the elution solvent using reverse-phase high-performance liquid chromatography (HPLC). Optimal separation conditions were successfully developed for all peptide pairs, enabling the direct quantification of Ser residue stereoinversion through a single HPLC run. Subsequently, the degree of Ser stereoinversion within the model peptide, Gly-Ser-Gly-Tyr, was determined using the method established in this study. Surprisingly, the stereoinversion of Ser residues occurred only when the absolute configurations of Ser and Tyr residues of the peptide differed from each other, whereas no stereoinversion was observed when their absolute configurations were identical. The experiments using peptides similar to the model peptide reveal that both the N-terminal amino group and the hydroxyl group of the C-terminal Tyr residue are involved in the stereoinversion of the Ser residue. By applying a simple method to quantify the stereoinversion of Ser residues, valuable insights into the mechanisms governing these stereoinversions were obtained.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data are available from the corresponding author upon reasonable request.

References

  1. T. Geiger, S. Clarke, J. Biol. Chem. 262, 785–794 (1987). https://doi.org/10.1016/S0021-9258(19)75855-4

    Article  CAS  PubMed  Google Scholar 

  2. Y. Sadakane, M. Kawahara, Int. J. Mol. Sci. 19, E2449 (2018). https://doi.org/10.3390/ijms19082449

    Article  CAS  Google Scholar 

  3. F. Curnis, R. Longhi, L. Crippa, A. Cattaneo, E. Dondossola, A. Bachi, A. Corti, J. Biol. Chem. 281, 36466–36476 (2006). https://doi.org/10.1074/jbc.M604812200

    Article  CAS  PubMed  Google Scholar 

  4. A. Corti, F.J. Curnis, J. Cell Sci. 124, 515–522 (2011). https://doi.org/10.1242/jcs.077172

    Article  CAS  PubMed  Google Scholar 

  5. Y. Sadakane, T. Yamazaki, K. Nakagomi, T. Akizawa, N. Fujii, T. Tanimura, M. Kaneda, Y. Hatanaka, J. Pharm. Biomed. Anal. 30, 1825–1833 (2003). https://doi.org/10.1016/s0731-7085(02)00525-3

    Article  CAS  PubMed  Google Scholar 

  6. Y. Sadakane, K. Konoha, M. Kawahara, K. Nakagomi, Chem. Biodivers. 7, 1371–1379 (2010). https://doi.org/10.1002/cbdv.200900330

    Article  CAS  PubMed  Google Scholar 

  7. N. Fujii, H. Sakaue, H. Sasaki, N. Fujii, J. Biol. Chem. 287, 39992–40002 (2012). https://doi.org/10.1074/jbc.M112.399972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. R. Shapira, C.H. Chou, Biochem. Biophys. Res. Commun. 146, 1342–1349 (1987). https://doi.org/10.1016/0006-291X(87)90797-2

    Article  CAS  PubMed  Google Scholar 

  9. M.Y.S. Hooi, R.J.W. Truscott, Age 33, 131–141 (2011). https://doi.org/10.1007/s11357-010-9171-7

    Article  CAS  PubMed  Google Scholar 

  10. T.V. Stabler, S.S. Byers, R.D. Zura, V.B. Kraus, Arthritis Res. Ther. 11, 34–42 (2009). https://doi.org/10.1186/ar2639

    Article  CAS  Google Scholar 

  11. M.Y. Hooi, M.J. Raftery, R.J. Truscott, Protein Sci. 22, 93–100 (2012). https://doi.org/10.1002/pro.2191

    Article  CAS  PubMed Central  Google Scholar 

  12. Y.A. Lyon, M.P. Collier, D.L. Riggs, M.T. Degiacomi, J.L. Benesch, R.R. Julian, J. Biol. Chem. 294, 7546–7555 (2019). https://doi.org/10.1074/jbc.ra118.007052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. R. Shapira, G.E. Austin, S.S. Mirra, J. Neurochem. 50, 69–74 (1988). https://doi.org/10.1111/j.1471-4159.1988.tb13231.x

    Article  CAS  PubMed  Google Scholar 

  14. T. Kubo, Y. Kumagae, C.A. Miller, I. Kaneko, J. Neuropathol. Exp. Neurol. 62, 248–259 (2003). https://doi.org/10.1093/jnen/62.3.248

    Article  CAS  PubMed  Google Scholar 

  15. T. Kubo, S. Nishimura, Y. Kumagae, I. Kaneko, J. Neurosci. Res. 70, 474–483 (2002). https://doi.org/10.1002/jnr.10391

    Article  CAS  PubMed  Google Scholar 

  16. M. Yamasaki, N. Takahashi, M. Hirose, J. Biol. Chem. 278, 35524–35530 (2003). https://doi.org/10.1074/jbc.M305926200

    Article  CAS  PubMed  Google Scholar 

  17. N. Takahashi, M. Onda, K. Hayashi, M. Yamasaki, T. Mita, M. Hirose, Biosci. Biotechnol. Biochem. 69, 922–931 (2005). https://doi.org/10.1271/bbb.69.922

    Article  CAS  PubMed  Google Scholar 

  18. T. Miyamoto, M. Sekine, T. Ogawa, M. Hidaka, H. Homma, H. Masaki, Amino Acids 38, 1377–1385 (2010). https://doi.org/10.1007/s00726-009-0348-2

    Article  CAS  PubMed  Google Scholar 

  19. J.L. Bada, J. Am. Chem. Soc. 94, 1371–1373 (1972). https://doi.org/10.1021/ja00759a064

    Article  CAS  PubMed  Google Scholar 

  20. G.G. Smith, G.V. Reddy, J. Org. Chem. 54, 4529–4535 (1989). https://doi.org/10.1021/jo00280a017

    Article  CAS  Google Scholar 

  21. Y. Sadakane, N. Fujii, K. Nakagomi, J. Chromatogr. B 879, 3240–3246 (2011). https://doi.org/10.1016/j.jchromb.2011.03.020

    Article  CAS  Google Scholar 

  22. B. Lyons, A.H. Kwan, J. Jamie, R.J. Truscott, FEBS J. 280, 1980–1990 (2013). https://doi.org/10.1111/febs.12217

    Article  CAS  PubMed  Google Scholar 

  23. P. Santhoshkumar, P. Udupa, R. Murugesan, K.K. Sharma, J. Biol. Chem. 283, 8477–8485 (2008). https://doi.org/10.1074/jbc.M705876200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. B. Lyons, J. Jamie, R.J. Truscott, Int. J. Pept. Res. Ther. 17, 131–135 (2011). https://doi.org/10.1007/s10989-011-9250-3

    Article  CAS  Google Scholar 

  25. B. Lyons, A.H. Kwan, R.J. Truscott, Aging Cell 15, 237–244 (2016). https://doi.org/10.1111/acel.12428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. B. Lyons, J.F. Jamie, R.J. Truscott, Amino Acids 46, 199–207 (2014). https://doi.org/10.1007/s00726-013-1619-5

    Article  CAS  PubMed  Google Scholar 

  27. S.M. Steinberg, J.L. Bada, J. Org. Chem. 48, 2295–2298 (1983). https://doi.org/10.1021/jo00161a036

    Article  CAS  Google Scholar 

  28. R. Liardon, S. Ledermann, J. Agric. Food Chem. 34, 557–565 (1986). https://doi.org/10.1021/jf00069a047

    Article  CAS  Google Scholar 

Download references

Funding

This work was partially supported by JSPS KAKENHI (Grant number 19K07031 and 23K06088). The authors acknowledge the support, but JSPS KAKENHI had no role in the design of the study, data collection, analysis, interpretation of results, or writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Sadakane.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadakane, Y., Kobayashi, M., Sano, M. et al. Quantification of serine residue stereoinversion in a short peptide by reversed-phase high-performance liquid chromatography: analysis of mechanisms promoting serine stereoinversion. ANAL. SCI. 40, 925–934 (2024). https://doi.org/10.1007/s44211-024-00543-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-024-00543-5

Keywords

Navigation