Skip to main content
Log in

Quantitative analysis of iodine and bromine in soil using an energy-dispersive X-ray fluorescence spectrometer with three-dimensional polarized optics

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A nondestructive and simple method for the determination of bromine and iodine in soil was investigated using an energy-dispersive X-ray fluorescence spectrometer equipped with three-dimensional polarized optics. Using a gadolinium X-ray tube and Mo and Al2O3 as optimal secondary target materials, K-lines were detected for bromine and iodine. The minimum detection limits for bromine and iodine were calculated using JSAC0411, a certified reference material of soil for metal composition analysis, and were 0.77 mg/kg for bromine and 2.3 mg/kg for iodine at a measurement time of 600 s. The results of the determination of bromine and iodine in soil samples by the standard addition method were 256 ± 8 mg/kg for iodine and 67.9 ± 1.3 mg/kg for bromine with JSAC0411, which were in close agreement with the results measured by inductively coupled plasma mass spectrometry (ICP-MS) after alkaline extraction with tetramethylammonium hydroxide (TMAH) solution. The method developed in this study is an excellent technique for direct analysis of soil by X-ray fluorescence analysis without any pretreatment such as alkaline extraction. It is expected to be a practical analytical method for elucidating the dynamics of bromine and iodine in agricultural land and soil.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, AH, upon reasonable request.

References

  1. N. Abdu, A.A. Abdullahi, A. Abdulkadir, Environ. Chem. Lett. (2017). https://doi.org/10.1016/j.soilbio.2009.04.026

    Article  Google Scholar 

  2. JIS A1204, The method for particle size distribution of soils, (2020)

  3. JIS Z8802, Methods for determination of pH of aqueous solutions, (2011)

  4. Y. Kouichi, S. Masao, F. Toshiharu, S. Kiyoshi, Jpn. J. Soil Sci. Plant Nutr. (1980). https://doi.org/10.20710/dojo.51.1_43

    Article  Google Scholar 

  5. N. Kawamoto, A. Tateya, Y. Hoshino, H. Seoji, T. Sakai, and S. Kimura, Res. Bull. Pl. Prot. Japan, (1973)

  6. CODEX ALIMENTARIUS “Principles and guidance on the selection of representative commodities for the extrapolation of maximum residue limits for pesticides to commodity groups”, https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXG%2B84-2012%252FCXG_084e.pdf Accessed 21 Dec 2023

  7. World Health Organization, Food, and Agriculture Organization of the United Nations, “The International Code of Conduct on Pesticide Management”, https://www.fao.org/3/I3604E/i3604e.pdf. Accessed 26 Nov 2023

  8. A.H. Havelaar, A.E.M.D. Hollander, P.F.M. Teunis, E.G. Evers, H.J.V. Kranen, J.F.M. Versteegh, J.E.M.H.H. Arie, A.E.M. de Hollander, P.F.M. Teunis, E.G. Evers, H.J. Van Kranen, J.F.M. Versteegh, J.E.M. Van Koten, W. Slob, Environ. Health Perspect. (2000). https://doi.org/10.1289/ehp.00108315

    Article  PubMed  PubMed Central  Google Scholar 

  9. . Konishi, K. Yaguchi, H. Kondo, T. Suzuki, J. Nakagawa, and T. Maki, Ann. Rep. Tokyo Metr. Res. Lab. P.H., (2001)

  10. K. Miyai, Jpn. J. Nutr. Diet. (1993). https://doi.org/10.5264/eiyogakuzashi.51.195

    Article  Google Scholar 

  11. Y. Sun, D. Teng, L. Zhao, X. Shi, Y. Li, Z. Shan, W. Teng, Eur. Thyroid J. (2022). https://doi.org/10.1530/etj-21-0084

    Article  PubMed  PubMed Central  Google Scholar 

  12. S. Sorrenti, E. Baldini, D. Pironi, A. Lauro, V. D’Orazi, F. Tartaglia, D. Tripodi, E. Lori, F. Gagliardi, M. Praticò, G. Illuminati, V. D’Andrea, P. Palumbo, S. Ulisse, Nutrients (2021). https://doi.org/10.3390/nu13124469

    Article  PubMed  PubMed Central  Google Scholar 

  13. C.L. Mackowiak, P.R. Grossl, Plants Soil (1999). https://doi.org/10.1023/a:1004666607330

    Article  Google Scholar 

  14. Y.-G. Zhu, Y.-Z. Huang, Y. Hu, Y.-X. Liu, Environ. Int. (2003). https://doi.org/10.1016/s0160-4120(02)00129-0

    Article  PubMed  Google Scholar 

  15. A. Caffagni, L. Arru, P. Meriggi, J. Milc, P. Perata, N. Pecchioni, Commun. Soil Sci. Plant Anal. (2011). https://doi.org/10.1080/00103624.2011.550372

    Article  Google Scholar 

  16. M. Nakano, Jpn. J. Health Phys. (2021). https://doi.org/10.5453/jhps.56.17

    Article  Google Scholar 

  17. M. Matsumura, K. Sasa, T. Matsunaka, K. Sueki, T. Takahashi, H. Matsuzaki, Geochem. J. (2018). https://doi.org/10.2343/geochemj.2.0505

    Article  Google Scholar 

  18. Y. Kouichi, Radioisotopes (1977). https://doi.org/10.3769/radioisotopes.26.9_647

    Article  Google Scholar 

  19. Y. Okada, S. Hirai, Bunseki Kagaku (2001). https://doi.org/10.2116/bunsekikagaku.50.879

    Article  Google Scholar 

  20. Y. Muramatsu, S. Yoshida, J. Radioanal. Nucl. Chem. (1993). https://doi.org/10.1007/BF02046785

    Article  Google Scholar 

  21. H. Tsukada, A. Takeda, H. Hasegawa, S. Ueda, T. Iyogi, J. Radioanal. Nucl. Chem. (2005). https://doi.org/10.1007/s10967-005-0656-2

    Article  Google Scholar 

  22. K. Tagami, S. Uchida, I. Hirai, H. Tsukada, H. Takeda, Anal. Chim. Acta (2006). https://doi.org/10.1016/j.aca.2006.04.011

    Article  Google Scholar 

  23. N. Saito, K. Inoue, M. Ono, A. Hokura, Adv. X-Ray Chem. Anal. Jpn. (2021). https://doi.org/10.57415/xshinpo.52.0_243

    Article  Google Scholar 

  24. K. Inoue, Y. Oneta, A. Hokura, Adv. X-Ray Chem. Anal. Jpn. (2019). https://doi.org/10.57415/xshinpo.50.0_233

    Article  Google Scholar 

  25. H. Yoshii, Y. Takata, K. Takamura, T. Uwatoko, Y. Sakai, Adv. X-Ray Chem. Anal. Jpn. (2021). https://doi.org/10.57415/xshinpo.52.0_199

    Article  Google Scholar 

  26. JIS K0119, General rules for X-ray fluorescence analysis (2008)

  27. T.D. Hettipathirana, Spectrochim. Acta Part B (2004). https://doi.org/10.1016/j.sab.2003.12.013

    Article  Google Scholar 

  28. A. Watanabe, T. Seno, Y. Suzuki, A. Hokura, Bunseki Kagaku (2021). https://doi.org/10.2116/bunsekikagaku.70.583.

    Article  Google Scholar 

  29. A. Watanabe, A. Hokura, Y. Suzuki, Adv. X-Ray. Chem. Anal. Jpn. 53, 203–222 (2022)

    CAS  Google Scholar 

  30. Y. Tani, Y. Yamaguchi, H. Yokota, H. Yamaada, N. Ohatsu, M. Uto, Bunseki Kagaku (2020). https://doi.org/10.2116/bunsekikagaku.69.685

    Article  Google Scholar 

  31. K.M. Bisgård, J. Laursen, B.S. Nielsen, X-Ray Spectrom. (1981). https://doi.org/10.1002/xrs.1300100106

    Article  Google Scholar 

  32. J.L. Yost, A.E. Hartemink, Plant Soil (2020). https://doi.org/10.1007/s11104-020-04550-z

    Article  Google Scholar 

  33. K. Tsuji, J. Injuk, R.V. Grieken, X-ray spectrometry: recent technological advances (Wiley, 2004)

    Book  Google Scholar 

  34. R.V. Grieken, A.A. Markowicz, Handbook of X-ray spectrometry (Dekker, 2002)

    Google Scholar 

  35. JIS A1226, Test methods for ignition loss of soils (2020)

  36. S. Nakashita, K. Shiokata, K. Kim, T. Hibino, J. JSCE Ser. B2 Coast. Eng. (2020). https://doi.org/10.2208/kaigan.76.2_I_1027

    Article  Google Scholar 

  37. H. Yamada, T. Kiriyama, K. Yonebayashi, Soil Sci. Plant Nutr. (2012). https://doi.org/10.1080/00380768.2010.548313

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Environmental Radioactivity Research Network Center (P-23-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiko Hokura.

Ethics declarations

Conflict of interest

The authors declare that there is no financial or non-financial conflict of interest to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokoro, M., Zhiyuan, S., Yamaji, I. et al. Quantitative analysis of iodine and bromine in soil using an energy-dispersive X-ray fluorescence spectrometer with three-dimensional polarized optics. ANAL. SCI. (2024). https://doi.org/10.1007/s44211-024-00541-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44211-024-00541-7

Keywords

Navigation