Skip to main content

Advertisement

Log in

Detection of the phosphorothioate oligonucleotide fomivirsen using a ligase detection reaction with polymerase chain reaction

  • Special Issue: Note
  • Novel Analytical Technologies Contributing to Clinical and Pharmaceutical Research Fields
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

This study aimed to develop a simple and sensitive detection method for fomivirsen, a 21-nucleotide phosphorothioate oligonucleotide used as a nucleic acid medicine, using a ligase detection reaction. A ligation probe was designed to hybridize with fomivirsen and polymerase chain reaction (PCR) primers, with a deoxyuridine part between the primer binding sites. The probe was ligated to a circular product by Taq DNA ligase, and the resulting product was converted to a linear form through the removal of the uracil base using uracil DNA glycosylase. The linear product was then quantified using real-time PCR. The developed method could detect 0.025–6.4 nM of fomivirsen in water and HeLa genomic DNA solutions and 0.6–160 nM of fomivirsen in mouse serum in combination with an extraction method based on alkalinization and neutralization. This method could be useful for not only detecting fomivirsen but also other functional oligonucleotides composed of phosphorothioate oligonucleotides. In summary, this study presents a practical and effective approach to the detection of the nucleic acid medicine fomivirsen.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Liu, M. Cheng, Y. Zhou, P. Deng, Int. J. Mol. Sci. 23(24), 15474 (2022). https://doi.org/10.3390/ijms232415474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. J. Talap, J. Zhao, M. Shen, Z. Song, H. Zhou, Y. Kang, L. Sun, L. Yu, S. Zeng, S. Cai, J. Pharm. Biomed. Anal. 206, 114368 (2021). https://doi.org/10.1016/j.jpba.2021.114368

    Article  CAS  PubMed  Google Scholar 

  3. R.Z. Yu, B. Baker, A. Chappell, R.S. Geary, E. Cheung, A.A. Levin, Anal. Biochem. 304, 19–25 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. U. Landegren, R. Kaiser, J. Sanders, L. Hood, Science 241(4869), 1077–1080 (1988). https://doi.org/10.1126/science.3413476

    Article  CAS  PubMed  Google Scholar 

  5. D.Y. Wu, R.B. Wallace, Gene 76(2), 245–254 (1989). https://doi.org/10.1016/0378-1119(89)90165-0

    Article  CAS  PubMed  Google Scholar 

  6. T.C. Hsuih, Y.N. Park, C. Zaretsky, F. Wu, S. Tyagi, F.R. Kramer, R. Sperling, D.Y. Zhang, J. Clin. Microbiol. 34(3), 501–507 (1996). https://doi.org/10.1128/jcm.34.3.501-507.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. X. Fu, Y. Shi, J. Ma, K. Zhang, G. Wang, G. Li, L. Xiao, H. Wang, Biotechniques 73(4), 205–213 (2022). https://doi.org/10.2144/btn-2022-0017

    Article  CAS  Google Scholar 

  8. M. Shin, P. Meda Krishnamurthy, G. Devi, J.K. Watts, Nucleic Acid Ther. 32(1), 66–73 (2022) https://doi.org/10.1089/nat.2021.0040

  9. M. Takahashi, E. Yamaguchi, T. Uchida, J. Biol. Chem. 259(16), 10041–10047 (1984). https://doi.org/10.1016/S0021-9258(18)90924-5

    Article  CAS  PubMed  Google Scholar 

  10. D.Y. Zhang, M. Brandwein, T.C.H. Hsuih, H. Li, Gene 211(2), 277–285 (1998). https://doi.org/10.1016/S0378-1119(98)00113-9

    Article  CAS  PubMed  Google Scholar 

  11. M.C. Longo, M.S. Berninger, J.L. Hartley, Gene 93(1), 125–128 (1990). https://doi.org/10.1016/0378-1119(90)90145-H

    Article  CAS  PubMed  Google Scholar 

  12. F. Alhamadani, K. Zhang, R. Parikh, H. Wu, T.P. Rasmussen, R. Bahal, X.B. Zhong, J.E. Manautou, Drug Metab. Dispos. 50(6), 879–887 (2022). https://doi.org/10.1124/dmd.121.000418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. N. Harikai, Y. Tanaka, S. Miyashita, K. Zaima, K. Shinomiya, Biotechniques 73, 281–287 (2022). https://doi.org/10.2144/btn-2022-0068

    Article  CAS  PubMed  Google Scholar 

  14. R.F. Azad, V.B. Driver, K. Tanaka, R.M. Crooke, K.P. Anderson, Antimicrob. Agents Chemother. 37, 1945–1954 (1993). https://doi.org/10.1128/AAC.37.9.1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A. Arnedo, M.A. Campanero, S. Espuelas, M.J. Renedo, J.M. Irache, J. Chromatogr. A 871(1–2), 311–320 (2000). https://doi.org/10.1016/S0021-9673(99)01193-0

    Article  CAS  PubMed  Google Scholar 

  16. X. Wei, G. Dai, G. Marcucci, Z. Liu, D. Hoyt, W. Blum, K.K. Chan, Pharm. Res. 23, 1251–1264 (2006). https://doi.org/10.1007/s11095-006-0082-3

    Article  CAS  PubMed  Google Scholar 

  17. R. Erb, K. Leithner, A. Bernkop-Schnürch, H. Oberacher, AAPS J. 14(4), 728–737 (2012). https://doi.org/10.1208/s12248-012-9381-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J. Hedman, P. Rådström, Methods Mol. Biol. 943, 17–48 (2013). https://doi.org/10.1007/978-1-60327-353-4_2

    Article  CAS  PubMed  Google Scholar 

  19. M.T. Bourke, C.A. Scherczinger, C. Ladd, H.C. Lee, J. Forensic Sci. 44(5), 1046–1050 (1999)

    Article  CAS  PubMed  Google Scholar 

  20. A. Kaczmarkiewicz, Ł Nuckowski, S. Studzińska, Talanta 196, 54–63 (2019). https://doi.org/10.1016/j.talanta.2018.12.023

    Article  CAS  PubMed  Google Scholar 

  21. J.M. Leeds, S.P. Henry, L. Truong, A. Zutshi, A.A. Levin, D. Kornbrust, Drug Metab. Dispos. 25(8), 921–926 (1997)

    CAS  PubMed  Google Scholar 

  22. D.E. Volk, G.L.R. Lokesh, Biomedicines 5(3), 41 (2017). https://doi.org/10.3390/biomedicines5030041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 20K06991.

Author information

Authors and Affiliations

Authors

Contributions

NH designed the study. NH, HK, TU, and TY performed the experiments and analyzed the data. NH wrote the manuscript. KZ and KS critically revised the manuscript. All authors revised and approved the final manuscript.

Corresponding author

Correspondence to Naoki Harikai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 165 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harikai, N., Kakuda, H., Uchiyama, T. et al. Detection of the phosphorothioate oligonucleotide fomivirsen using a ligase detection reaction with polymerase chain reaction. ANAL. SCI. 40, 965–971 (2024). https://doi.org/10.1007/s44211-024-00539-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-024-00539-1

Keywords

Navigation