Skip to main content
Log in

Anthraquinone/activated carbon electrochemical sensor and its application in acetaminophen analysis

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Acetaminophen (AC) can inhibit the synthesis of prostaglandins in the body, and has antipyretic and analgesic effects. In this paper, a two-step microwave impregnation method was used to prepare anthraquinone (AQ)-doped carbon composite, which were applied to the surface modification of glassy carbon electrodes (GCE) for the determination of acetaminophen (AC) using differential pulse voltammetry (DPV). The composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman and Fourier infrared spectroscopy (FT-IR). The results showed that anthraquinone was successfully modified on the surface of activated carbon. The peak current of AC increased with its concentration in the range of 0.1 μM to 700 μM (R2 = 0.998) and a detection limit of 0.05 μM was obtained with 20%AQ doped carbon electrochemical sensor (20%AQ-C/GCE). Electrochemical Impedance Spectroscopy (EIS) test results indicated that the charge transfer resistance (Rct) of 20%AQ-C/GCE is only the one-fourth of that of bare GCE. The proposed 20%AQ-C/GCE sensor has good stability, reproducibility and selectivity for the detection of AC. The sensor is also suitable for the detection of real samples, indicating its good practicality.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. A.S. Farag, Voltammetric determination of acetaminophen in pharmaceutical preparations and human urine using glassy carbon paste electrode modified with reduced graphene oxide. Anal. Sci. 38, 1213 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S. Shahrokhian, E. Asadian, Simultaneous voltammetric determination of ascorbic acid, acetaminophen and isoniazid using thionine immobilized multi-walled carbon nanotube modified carbon paste electrode. Electrochim. Acta 55, 666 (2010)

    Article  CAS  Google Scholar 

  3. A. Pyka, M. Budzisz, M. Dolowy, Validation thin layer chromatography for the determination of acetaminophen in tablets and comparison with a pharmacopeial method. Biomed. Res. Int. 2013, 545703 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  4. F.A. Mohamed, M.A. AbdAllah, S.M. Shmmat, Selective sepctrophotometric determination of p-aminophenol and acetaminophen. Talanta 44, 61 (1997)

    Article  CAS  PubMed  Google Scholar 

  5. Y.C. Qiu, L.Z. Benet, A.L. Burlingame, Identification of the hepatic protein targets of reactive metabolites of acetaminophen in vivo in mice using two-dimensional gel electrophoresis and mass spectrometry. J. Biol. Chem. 273, 17940 (1998)

    Article  CAS  PubMed  Google Scholar 

  6. W.A. Garland, K.C. Hsiao, E.J. Pantuck, A.H. Conney, Quantitative determination of phenacetion and its metabolite acetaminophen by GLC-chemical ionization mass spectrometry. J. Pharm. Sci. 66, 340 (1977)

    Article  CAS  PubMed  Google Scholar 

  7. J.R. Bales, P.J. Sadier, J.K. Nicholson, J.A. Timbrell, Urinary Excretion of acetaminophen and its metabolites as studied by proton NMR spectroscopy. Clin. Chem. 30, 1631 (1984)

    Article  CAS  PubMed  Google Scholar 

  8. D. Kim, J.M. Kim, Y. Jeon, J. Lee, J. Oh, W.H. Antink, D. Kim, Y. Piao, Novel two-step activation of biomass-derived carbon for highly sensitive electrochemical determination of acetaminophen. Sens. Actuators B Chem. 259, 50 (2018)

    Article  CAS  Google Scholar 

  9. N. Mohammadi, M. Bahmaei, A.M. Sharif, Highly sensitive CuZnO-Fe3O4/rGO modified glassy carbon electrode for the electrochemical determination of acetaminophen, tyrosine and codeine in human blood plasma and urine. J. Electroanal. Chem. 902, 115768 (2021)

    Article  CAS  Google Scholar 

  10. L.J. Sun, Q. Li, M. Zheng, S.Y. Lin, C.L. Guo, L.Y. Luo, S. Guo, Y.X. Li, C. Wang, B.J. Jiang, Efficient Suzuki-Miyaura cross-coupling reaction by loading trace Pd nanoparticles onto copper-complex-derived Cu/C-700 solid support. J. Colloid Interface Sci. 608, 2463 (2022)

    Article  CAS  PubMed  Google Scholar 

  11. J. Balintova, R. Pohl, P. Horakova, P. Vidlakova, L. Havran, M. Fojta, M. Hocek, Anthraquinone as a redox label for DNA: synthesis, enzymatic incorporation, and electrochemistry of anthraquinone-modified nucleosides, nucleotides, and DNA. Chem. 17, 14063 (2011)

    Article  CAS  Google Scholar 

  12. M. Wagner, K. Qvortrup, K.E. Grier, M.R. Ottosen, J.O. Petersen, D. Tanner, J. Ulstrup, J. Zhang, Gold-carbonyl group interactions in the electrochemistry of anthraquinone thiols self-assembled on Au (111)-surfaces. Chem. Sci. 10, 3927 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Y. Gao, W.H. Zhu, Y.Q. Li, J.L. Li, S.N. Yun, T.L. Huang, Novel porous carbon felt cathode modified by cyclic voltammetric electrodeposited polypyrrole and anthraquinone 2-sulfonate for an efficient electro-Fenton process. Int. J. Hydrog. Energy 46, 9707 (2021)

    Article  CAS  Google Scholar 

  14. Y. Yang, S. Ciampi, M.H. Choudhury, J.J. Gooding, Light Activated electrochemistry: light intensity and pH dependence on electrochemical performance of anthraquinone derivatized silicon. J. Phys. Chem. C 120, 2874 (2016)

    Article  CAS  Google Scholar 

  15. K. Nueangnoraj, T. Tomai, H. Nishihara, T. Kyotani, I. Honma, An organic proton battery employing two redox-active quinones trapped within the nanochannels of zeolite-templated carbon. Carbon 107, 831 (2016)

    Article  CAS  Google Scholar 

  16. W.H. Zhu, Y.Q. Li, Y. Gao, C. Wang, J.F. Zhang, H.L. Bai, T.L. Huang, A new method to fabricate the cathode by cyclic voltammetric electrodeposition for electro-Fenton application. Electrochim. Acta 349, 136415 (2020)

    Article  CAS  Google Scholar 

  17. A. Le Comte, T. Brousse, D. Bélanger, Simpler and greener grafting method for improving the stability of anthraquinone-modified carbon electrode in alkaline media. Electrochim. Acta 137, 447 (2014)

    Article  Google Scholar 

  18. F.Y. Yu, K. Wang, C. Wang, X.X. He, Y. Liao, S.L. Zhao, H. Mao, X.T. Li, J. Ma, Anthraquinone covalently modified carbon nanotubes for efficient and steady electrocatalytic H2O2 generation. Chem. Res. Chin. Univ. 36, 1332 (2020)

    Article  CAS  Google Scholar 

  19. X. Liu, C.L. Zhong, J. Ji, W. Yang, Z.F. Tian, Y.C. Chen, Q.F. Tian, Polyoxometalate/carbon black modified glassy carbon electrode for the detection of dopamine. Electroanalysis 35, 116 (2023)

    Article  Google Scholar 

  20. Q. F. Tian, B. Fu, Electrocatalytic Performance of Nitrogen and Phosphorus Co-Doped Carbon Supported Pd Catalysts for Formic Acid Oxidation, J. Comp. Chem. 2, (2018)

  21. X. Chen, H.W. Wang, H. Yi, X.F. Wang, X. Yan, Z.H. Guo, Anthraquinone on porous carbon nanotubes with improved supercapacitor performance. J. Phys. Chem. C 118, 8262 (2014)

    Article  CAS  Google Scholar 

  22. X.L. Gao, D.F. Du, S. Li, X. Yan, W. Xing, P. Bai, Q.Z. Xue, Z.F. Yan, Outstanding capacitive performance of ordered mesoporous carbon modified by anthraquinone. Electrochim. Acta 259, 110 (2018)

    Article  CAS  Google Scholar 

  23. J. Ma, F.Y. Yu, D.Q. Hu, Q.C. Wang, L. Li, W. Zhang, Anthraquinone covalently modified carbon fiber with significantly improved electrocatalytic performance for hydrogen peroxide production. J. SW. Minzu Univ. 47, 488 (2021)

    CAS  Google Scholar 

  24. H.J. Wang, S.Y. Zhang, S.F. Li, J.Y. Qu, Electrochemical sensor based on palladium-reduced graphene oxide modified with gold nanoparticles for simultaneous determination of acetaminophen and 4-aminophenol. Talanta 178, 188 (2018)

    Article  CAS  PubMed  Google Scholar 

  25. M.C.N. Ngwem, J.C. Kemmegne-Mbouguen, H.W. Langmi, N.M. Musyoka, R. Mokaya, Electrochemical sensor for ascorbic acid, acetaminophen and nitrite based on organoclay/Zr‐MOF film modified glassy carbon electrode. ChemistrySelect 7, 2308 (2022)

    Article  Google Scholar 

  26. D.X. Yang, L.D. Zhu, X.Y. Jiang, L.P. Guo, Sensitive determination of Sudan I at an ordered mesoporous carbon modified glassy carbon electrode. Sens. Actuators B Chem. 141, 124 (2009)

    Article  CAS  Google Scholar 

  27. K. Reddaiah, T.M. Reddy, K. Mallikarjuna, G. Narasimha, Electrochemical detection of dopamine at poly (solochrome cyanine)/Pd nanoparticles doped modified carbon paste electrode and simultaneous resolution in the presence of ascorbic acid and uric acid: a voltammetric method. Anal. Methods 5, 5627 (2013)

    Article  CAS  Google Scholar 

  28. J.F. Gao, J.F. Hou, L.B. Kong, Capacitive charge storage mechanism in sanmartinite to be determined by qualitative and quantitative electrochemical analysis. Electrochim. Acta 439, 141692 (2023)

    Article  CAS  Google Scholar 

  29. W.C. Liang, L.L. Liu, Y.G. Li, H.L. Ren, T.T. Zhu, Y.W. Xu, B.C. Ye, Nitrogen-rich porous carbon modified electrochemical sensor for the detection of acetaminophen. J. Electroanal. Chem. 855, 113496 (2019)

    Article  CAS  Google Scholar 

  30. A. Dehnavi, A. Soleymanpour, Highly sensitive voltammetric electrode for the trace measurement of methyldopa based on a pencil graphite modified with phosphomolibdate/graphene oxide. Microchem. J. 157, 104969 (2020)

    Article  CAS  Google Scholar 

  31. W.Q. Zhang, L.K. Zong, S.Q. Liu, S. Pei, Y.S. Zhang, X.M. Ding, B. Jiang, Y.P. Zhang, An electrochemical sensor based on electro-polymerization of caffeic acid and Zn/Ni-ZIF-8-800 on glassy carbon electrode for the sensitive detection of acetaminophen. Biosens. Bioelectron. 131, 200 (2019)

    Article  CAS  PubMed  Google Scholar 

  32. M. Ali, S. Sharma, R. Singh, K. Sharma, S. Majhi, D. Guin, C.S.P. Tripathi, Barium titanate nanocubes as a dual electrochemical sensor for detection of dopamine and acetaminophen. J. Electrochem. Soc. 169, 067512 (2022)

    Article  CAS  Google Scholar 

  33. S.P. Li, J.Y. Zhou, M. Noroozifar, K. Kerman, Gold–platinum core-shell nanoparticles with thiolated polyaniline and multi-walled carbon nanotubes for the simultaneous voltammetric determination of six drug molecules. Chemosensors 9, 24 (2021)

    Article  Google Scholar 

  34. E.K. Savan, Electrochemical determination of N-acetyl cysteine in the presence of acetaminophen at multi-walled carbon nanotubes and nafion modified sensor. Sens. Actuators B Chem. 282, 500 (2019)

    Article  Google Scholar 

  35. S. Lotfi, H. Veisi, Pd nanoparticles decorated poly-methyldopa@GO/Fe(3)O(4) nanocomposite modified glassy carbon electrode as a new electrochemical sensor for simultaneous determination of acetaminophen and phenylephrine. Mater Sci Eng C Mater Biol Appl 105, 110112 (2019)

    Article  CAS  PubMed  Google Scholar 

  36. M. Amiri-Aref, J.B. Raoof, R. Ojani, Electrocatalytic oxidation and selective determination of an opioid analgesic methadone in the presence of acetaminophen at a glassy carbon electrode modified with functionalized multi-walled carbon nanotubes: application for human urine, saliva and pharmaceutical samples analysis. Colloids Surf. B 109, 287 (2013)

    Article  CAS  Google Scholar 

  37. M.D. Tezerjani, A. Benvidi, A. Dehghani Firouzabadi, M. Mazloum-Ardakani, A. Akbari, Epinephrine electrochemical sensor based on a carbon paste electrode modified with hydroquinone derivative and graphene oxide nano-sheets: simultaneous determination of epinephrine, acetaminophen and dopamine. Measurement 101, 183 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wuhan Institute of Technology Graduate Education Innovation Fund (CX2022027), the financial supports from the Opening Research Fund of Hubei Key Laboratory for Processing and Application of Catalytic Materials and the Natural Science Foundation of Hubei Province (Grant No. 2016CFA079)

Funding

Natural Science Foundation of Hubei Province, 2016CFA079, Qifeng Tian.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qifeng Tian or Zhengfang Tian.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 485 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, C., Chen, Y., Zheng, Y. et al. Anthraquinone/activated carbon electrochemical sensor and its application in acetaminophen analysis. ANAL. SCI. (2024). https://doi.org/10.1007/s44211-024-00537-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44211-024-00537-3

Keywords

Navigation