Skip to main content
Log in

Low-interference and sensitive electrochemical detection of glucose and lactate using boron-doped diamond electrode and electron mediator menadione

  • Special Issue: Original Paper
  • Novel Analytical technologies contributing to clinical and pharmaceutical research fields
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

To minimize background interference in electrochemical enzymatic biosensors employing electron mediators, it is essential for the electrochemical oxidation of electroactive interfering species (ISs), such as ascorbic acid (AA), to proceed slowly, and for the redox reactions between electron mediators and ISs to occur at a low rate. In this study, we introduce a novel combination of a working electrode and an electron mediator that effectively mitigates interference effects. Compared to commonly used electrodes such as Au, glassy carbon, and indium tin oxide (ITO), boron-doped diamond (BDD) electrodes demonstrate significantly lower anodic current (i.e., lower background levels) in the presence of AA. Additionally, menadione (MD) exhibits notably slower reactivity with AA compared to other electron mediators such as Ru(NH3)63+, 4-amino-1-naphthol, and 1,4-naphthoquinone, primarily due to the lower formal potential of MD compared to AA. This synergistic combination of BDD electrode and MD is effectively applied in three biosensors: (i) glucose detection using electrochemical-enzymatic (EN) redox cycling, (ii) glucose detection using electrochemical-enzymatic-enzymatic (ENN) redox cycling, and (iii) lactate detection using ENN redox cycling. Our developed approach significantly outperforms the combination of ITO electrode and MD in minimizing IS interference. Glucose in artificial serum can be detected with detection limits of ~ 20 μM and ~ 3 μM in EN and ENN redox cycling, respectively. Furthermore, lactate in human serum can be detected with a detection limit of ~ 30 μM. This study demonstrates sensitive glucose and lactate detection with minimal interference, eliminating the need for (bio)chemical agents to remove interfering species.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. E.T. da Silva, D.E. Souto, J.T. Barragan, J. de F. Giarola, A.C. de Moraes, L.T. Kubota, ChemElectroChem (2017). https://doi.org/10.1002/celc.201600758

  2. G. Hernandez-Vargas, J.E. Sosa-Hernández, S. Saldarriaga-Hernandez, A.M. Villalba-Rodríguez, R. Parra-Saldivar, H.M. Iqbal, Biosens. (2018). https://doi.org/10.3390/bios8020029

    Article  Google Scholar 

  3. A. Singh, A. Sharma, A. Ahmed, A.K. Sundramoorthy, H. Furukawa, S. Arya, A. Khosla, Biosens. (2021). https://doi.org/10.3390/bios11090336

    Article  Google Scholar 

  4. N. Zare-Shehneh, F. Mollarasouli, M. Ghaedi, Critical. Rev. Anal. Chem. (2023). https://doi.org/10.1080/10408347.2021.1967719

    Article  Google Scholar 

  5. Y. Zeng, Z. Zhu, D. Du, Y. Lin, J. Electroanal. Chem. (2016). https://doi.org/10.1016/j.jelechem.2016.10.030

    Article  Google Scholar 

  6. M. R. Romero, M. L. Picchio (2020). Biosensors Based on Nanomaterials: Transducers and Modified Surfaces for Diagnostics. In: P. Chandra, R. Prakash (eds) Nanobiomaterial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-9437-1_4

  7. B. Jurado-Sánchez (2023). Nanobioelectrochemical Sensors in Clinical Diagnosis. In: U. P. Azad, P. Chandra (eds) Handbook of Nanobioelectrochemistry. Springer, Singapore. https://doi.org/10.1007/978-981-32-9840-8_2

  8. E.B. Aydın, M.K. Sezgintürk, Trends Anal. Chem. (2017). https://doi.org/10.1016/j.trac.2017.09.021

    Article  Google Scholar 

  9. P. Nandhakumar, A.M. Ichzan, N.-S. Lee, Y.H. Yoon, S. Ma, S. Kim, H. Yang, ACS Senss (2019). https://doi.org/10.1021/acssensors.9b01448

    Article  Google Scholar 

  10. S. Park, D.-E. Kwak, A.-M.J. Haque, N.-S. Lee, Y.H. Yoon, H. Yang, ACS Senss (2022). https://doi.org/10.1021/acssensors.1c02346

    Article  Google Scholar 

  11. J. Kwon, J.H. Jeon, S.I. Yang, H. Yang, Electroanalysis (2023). https://doi.org/10.1002/elan.202300063

    Article  Google Scholar 

  12. M.R. Akanda, H.-A. Joung, V. Tamilavan, S. Park, S. Kim, M.H. Hyun, M.-G. Kim, H. Yang, Analyst (2014). https://doi.org/10.1039/C3AN02328A

    Article  PubMed  Google Scholar 

  13. M.R. Akanda, Y.-L. Choe, H. Yang, Anal. Chem. (2012). https://doi.org/10.1021/ac202638y

    Article  PubMed  Google Scholar 

  14. G. Dutta, S. Kim, S. Park, H. Yang, Anal. Chem. (2014). https://doi.org/10.1021/ac5006487

    Article  PubMed  Google Scholar 

  15. M.R. Akanda, V. Tamilavan, S. Park, K. Jo, M.H. Hyun, H. Yang, Anal. Chem. (2013). https://doi.org/10.1021/ac3028855

    Article  PubMed  Google Scholar 

  16. J. Jeong, J. Das, M. Choi, J. Jo, M.A. Aziz, H. Yang, Analyst (2014). https://doi.org/10.1039/C4AN01174K

    Article  PubMed  Google Scholar 

  17. S. Noh, H. Yang, Electroanalysis (2014). https://doi.org/10.1002/elan.201400383

    Article  Google Scholar 

  18. F. Arslan, U. Beskan, Artif. Cells, Nanomed. Biotechnol. (2014). https://doi.org/10.3109/21691401.2013.812650

  19. S. Liu, Y. Jia, Y. Li, P. Wang, Z. Xu, Q. Liu, Y. Li, Q. Wei, ACS Sens. (2020). https://doi.org/10.1021/acssensors.0c01695

    Article  PubMed  PubMed Central  Google Scholar 

  20. Y. Wu, S. Ali, R.J. White, ACS Sens. (2020). https://doi.org/10.1021/acssensors.0c02363

    Article  PubMed  PubMed Central  Google Scholar 

  21. S. Karuppiah, N.C. Mishra, W.-C. Tsai, W.-S. Liao, C.-F. Chou, ACS Sens. (2021). https://doi.org/10.1021/acssensors.1c00851

    Article  PubMed  Google Scholar 

  22. S. Park, J. Kim, H. Ock, G. Dutta, J. Seo, E.-C. Shin, H. Yang, Analyst (2015). https://doi.org/10.1039/C5AN01086A

    Article  PubMed  PubMed Central  Google Scholar 

  23. K. Lee, G. Song, J. Kwon, J. Kim, H. Yang, Electroanalysis (2022). https://doi.org/10.1002/elan.202200051

    Article  Google Scholar 

  24. P. Nandhakumar, A.-M.J. Haque, N.-S. Lee, Y.H. Yoon, H. Yang, Anal. Chem. (2018). https://doi.org/10.1021/acs.analchem.8b02590

    Article  PubMed  Google Scholar 

  25. J. Kang, J. Shin, H. Yang, Electroanalysis (2018). https://doi.org/10.1002/elan.201800119

    Article  Google Scholar 

  26. J. Xu, Y. Yokota, R.A. Wong, Y. Kim, Y. Einaga, J. Am. Chem. Soc. (2020). https://doi.org/10.1021/jacs.9b11183

    Article  PubMed  PubMed Central  Google Scholar 

  27. T. Watanabe, Y. Honda, K. Kanda, Y. Einaga, Phys. Status Solidi (2014). https://doi.org/10.1002/pssa.201431455

    Article  Google Scholar 

  28. J.V. Macpherson, Phys. Chem. Chem. Phys. (2015). https://doi.org/10.1039/C4CP04022H

    Article  PubMed  Google Scholar 

  29. C. Yamaguchi, K. Natsui, S. Iizuka, Y. Tateyama, Y. Einaga, Phys. Chem. Chem. Phys. (2019). https://doi.org/10.1039/C8CP07402J

    Article  PubMed  Google Scholar 

  30. N. Yang, S. Yu, J.V. Macpherson, Y. Einaga, H. Zhao, G. Zhao, G.M. Swain, X. Jiang, Chem. Soc. Rev. (2019). https://doi.org/10.1002/celc.201901088

    Article  PubMed  PubMed Central  Google Scholar 

  31. K. Muzyka, J. Sun, T.H. Fereja, Y. Lan, W. Zhang, G. Xu, Anal. Methods (2019). https://doi.org/10.1039/C8AY02197J

    Article  Google Scholar 

  32. M. Yence, A. Cetinkaya, G. Ozcelikay, S.I. Kaya, S.A. Ozkan, Critical. Rev. Anal. Chem. (2022). https://doi.org/10.1039/C8AY02197J

    Article  Google Scholar 

  33. Y. Qi, H. Long, L. Ma, Q. Wei, S. Li, Z. Yu, J. Hu, P. Liu, Y. Wang, L. Meng, Appl. Surf. Sci. (2016). https://doi.org/10.1016/j.apsusc.2016.08.158

    Article  Google Scholar 

  34. J. Fei, L. Luo, S. Hu, Z. Gao, Electroanalysis (2004). https://doi.org/10.1002/bkcs.12147

    Article  Google Scholar 

  35. J. Shin, K. Park, S. Park, H. Yang, Bull. Kor. Chem. Soc. (2021). https://doi.org/10.1002/bkcs.12147

    Article  Google Scholar 

  36. J. Kwon, J.H. Jeon, S.I. Yang, H. Yang, Bull. Kor. Chem. Soc. (2021). https://doi.org/10.1002/bkcs.12424

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (2022R1A4A2000778 and 2021R1A2C3012115).

Funding

National Research Foundation of Korea, 2022R1A4A2000778, Haesik Yang, 2021R1A2C3012115, Haesik Yang.

Author information

Authors and Affiliations

Authors

Contributions

NY and YJ are equally contributed. Conceptualization: NY, YJ, HY, Investigation: NY, YJ, Supervision: GK, JK, HY, Writing—original draft: NY, Writing—review & editing: NY, HY.

Corresponding author

Correspondence to Haesik Yang.

Ethics declarations

Conflict of interest

The authors declare no financial interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 422 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, N., Jung, Y., Kim, G. et al. Low-interference and sensitive electrochemical detection of glucose and lactate using boron-doped diamond electrode and electron mediator menadione. ANAL. SCI. 40, 853–861 (2024). https://doi.org/10.1007/s44211-023-00497-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00497-0

Keywords

Navigation