Skip to main content
Log in

Development of a liquid chromatography-based versatile bioanalysis for bevacizumab based on pretreatment combining aptamer affinity purification and centrifugal ultrafiltration concentration

  • Special Issue: Original Paper
  • Frontiers of Separation Analysis
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We report on the development of a versatile and accurate bioanalytical method for bevacizumab using a pretreatment method combining affinity purification with anti-idiotypic DNA aptamers and centrifugal ultrafiltration concentration, followed by liquid chromatography (LC)-fluorescence analysis. An affinity purification method using Sepharose beads as an affinity support removed immunoglobulin G and a large amount of coexisting substances in the serum sample. Purified bevacizumab was separated as a single peak by conventional LC and detected fluorometrically, showing good linearity (R2 = 0.999) in the range of 5–200 μg/mL, sufficient to analyze bevacizumab concentrations in the blood of bevacizumab-treated patients. By combining this purification method with a concentration method using a centrifugal filtration device that inhibits non-specific adsorption of bevacizumab, the quantitative range was reduced by a factor of 10 while showing good linearity (R2 = 0.999) in the 0.5–20 μg/mL range. The developed analytical method is expected to be used not only for general bioanalysis of therapeutic mAbs in clinical settings, but also for next-generation antibody drugs that show drug efficacy at low concentrations and for analysis of trace samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. T. Suzuki, A. Ishii-Watabe, M. Tada, T. Kobayashi, T. Kanayasu-Toyoda, T. Kawanishi, T. Yamaguchi, J. Immunol. 184, 1968 (2010). https://doi.org/10.4049/jimmunol.0903296

    Article  CAS  PubMed  Google Scholar 

  2. F. Darrouzain, S. Bian, C. Desvignes, C. Bris, H. Watier, G. Paintaud, A. de Vries, Ther. Drug Monit. 39, 316 (2017). https://doi.org/10.1097/FTD.0000000000000419

    Article  CAS  PubMed  Google Scholar 

  3. C.W.N. Damen, J.H.M. Schellens, J.H. Beijnen, Hum. Antibodies 18, 47 (2009). https://doi.org/10.3233/HAB-2009-0206

    Article  CAS  PubMed  Google Scholar 

  4. J.W. Lee, M. Kelley, L.E. King, J. Yang, H. Salimi-Moosavi, M.T. Tang, J.-F. Lu, J. Kamerud, A. Ahene, H. Myler, C. Rogers, AAPS J. 13, 99 (2011). https://doi.org/10.1208/s12248-011-9251-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. E. Ezan, F. Bitsch, Bioanalysis 1, 1375 (2009). https://doi.org/10.4155/bio.09.121

    Article  CAS  PubMed  Google Scholar 

  6. R.F. Staack, J.O. Stracke, K. Stubenrauch, R. Vogel, J. Schleypen, A. Papadimitriou, Bioanalysis 3, 523 (2011). https://doi.org/10.4155/bio.11.16

    Article  CAS  PubMed  Google Scholar 

  7. K. Todoroki, H. Mizuno, E. Sugiyama, T. Toyo’oka, J. Pharm. Biomed. Anal. 179, 112991 (2020). https://doi.org/10.1016/j.jpba.2019.112991

    Article  CAS  PubMed  Google Scholar 

  8. K.A.M. de Jong, S.J. van Breugel, M.J.X. Hillebrand, H. Rosing, A.D.R. Huitema, J.H. Beijnen, Bioanalysis 12, 1405 (2020). https://doi.org/10.4155/bio-2020-0204

    Article  CAS  PubMed  Google Scholar 

  9. K. Todoroki, T. Yamada, H. Mizuno, T. Toyo’oka, Anal. Sci. 34, 397 (2018). https://doi.org/10.2116/analsci.17R003

    Article  CAS  PubMed  Google Scholar 

  10. C. Wei, D. Su, J. Wang, W. Jian, D. Zhang, Curr. Pharmacol. Rep. 4, 45 (2018). https://doi.org/10.1007/s40495-017-0118-x

    Article  CAS  Google Scholar 

  11. N. Iwamoto, T. Shimada, Pharmacol. Ther. 185, 147 (2018). https://doi.org/10.1016/j.pharmthera.2017.12.007

    Article  CAS  PubMed  Google Scholar 

  12. C.W.N. Damen, E.J.B. Derissen, J.H.M. Schellens, H. Rosing, J.H. Beijnen, J. Pharm. Biomed. Anal. 50, 861 (2009). https://doi.org/10.1016/j.jpba.2009.04.031

    Article  CAS  PubMed  Google Scholar 

  13. T.M. Dillon, P.V. Bondarenko, M. Speed Ricci, J. Chromatogr. A 1053, 299 (2004). https://doi.org/10.1016/j.chroma.2004.08.058

    Article  CAS  PubMed  Google Scholar 

  14. T.M. Dillon, P.V. Bondarenko, D.S. Rehder, G.D. Pipes, G.R. Kleemann, M.S. Ricci, J. Chromatogr. A 1120, 112 (2006). https://doi.org/10.1016/j.chroma.2006.01.016

    Article  CAS  PubMed  Google Scholar 

  15. T. Yamada, H. Mizuno, J.Z. Min, T. Toyo’oka, K. Todoroki, Chromatography 39, 21 (2018). https://doi.org/10.15583/jpchrom.2017.014

    Article  CAS  Google Scholar 

  16. S. Sotomatsu, T. Yamada, H. Mizuno, H. Hayashi, T. Toyo’oka, K. Todoroki, Chromatography 40, 99 (2019). https://doi.org/10.15583/jpchrom.2019.013

    Article  CAS  Google Scholar 

  17. K. Todoroki, T. Nakano, Y. Eda, K. Ohyama, H. Hayashi, D. Tsuji, J.Z. Min, K. Inoue, N. Iwamoto, A. Kawakami, Y. Ueki, K. Itoh, T. Toyo’oka, Anal. Chim. Acta 916, 112 (2016). https://doi.org/10.1016/j.aca.2016.02.029

    Article  CAS  PubMed  Google Scholar 

  18. T. Saito, Y. Shimizu, K. Tsukakoshi, K. Abe, J. Lee, K. Ueno, R. Asano, B.V. Jones, T. Yamada, T. Nakano, J. Tong, A. Hishiki, K. Hara, H. Hashimoto, K. Sode, T. Toyo’oka, K. Todoroki, K. Ikebukuro, Biosens. Bioelectron. 203, 114027 (2022). https://doi.org/10.1016/j.bios.2022.114027

    Article  CAS  PubMed  Google Scholar 

  19. T. Yamada, T. Saito, Y. Hill, Y. Shimizu, K. Tsukakoshi, H. Mizuno, H. Hayashi, K. Ikebukuro, T. Toyo’oka, K. Todoroki, Anal. Chem. 91, 3125 (2019). https://doi.org/10.1021/acs.analchem.8b05725

    Article  CAS  PubMed  Google Scholar 

  20. T. Yamada, T. Saito, Y. Shimizu, K. Tsukakoshi, H. Hayashi, H. Mizuno, D. Tsuji, K. Yamamoto, K. Itoh, T. Toyo’oka, K. Ikebukuro, K. Todoroki, Molecules 24, 857 (2019). https://doi.org/10.3390/molecules24050857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Y. Shibata, T. Yamada, E. Sugiyama, H. Mizuno, Chromatography 41, 123 (2020). https://www.jstage.jst.go.jp/article/jpchrom/41/3/41_2020.016/_article/-char/ja/.

  22. U.S. FDA, Bioanalytical Method Validation, Guidance for Industry (US Department Of, Rockville, 2018)

    Google Scholar 

  23. A.C. Moser, D.S. Hage, Bioanalysis 2, 769 (2010). https://doi.org/10.4155/bio.10.31

    Article  CAS  PubMed  Google Scholar 

  24. Q. Zhao, X.-F. Li, Y. Shao, X.C. Le, Anal. Chem. 80, 7586 (2008). https://doi.org/10.1021/ac801206s

    Article  CAS  PubMed  Google Scholar 

  25. E. Bergsland, M.N. Dickler, Oncologist 9(Suppl 1), 36 (2004). https://doi.org/10.1634/theoncologist.9-suppl_1-36

    Article  CAS  PubMed  Google Scholar 

  26. K. Todoroki, J. Tong, M. Aoki, N. Kobayashi, R. Isobe, H. Tasaki, T. Yamada, A. Furusho, E. Sugiyama, H. Mizuno, H. Hayashi, T. Toyo’oka, J. Pharm, Biomed. Anal. Open 1, 100006 (2023). https://doi.org/10.1016/j.jpbao.2023.100006

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI, Grant Nos. 16K08200, 19H03360, 22K06550, and the TaNeDS project funded by Daiichi-Sankyo Co. Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichiro Todoroki.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Todoroki, K., Hamada, D., Yamada, T. et al. Development of a liquid chromatography-based versatile bioanalysis for bevacizumab based on pretreatment combining aptamer affinity purification and centrifugal ultrafiltration concentration. ANAL. SCI. 39, 1805–1811 (2023). https://doi.org/10.1007/s44211-023-00417-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00417-2

Keywords

Navigation