Skip to main content
Log in

Various non-destructive SFS techniques for simultaneous recognition and monitoring of 1-amino pyrene and 1-napthyl amine in the mixture

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The sensitive, non-destructive constant wavelength (CW) and constant energy (CE) SFS techniques have been used for the simultaneous determination of 1-amino pyrene (AP) and 1-napthyl amine (NA) in their mixtures without prior separation via optimization of different experimental conditions (ΔλCW 70.0 nm, ΔνCE 4000.0 cm−1, scan rate 240.0 nm/min, 25.0 °C, methanol). Amplitude–concentration plots have been linear for 1-amino pyrene, AP (0.01–0.1 mg/L) and 1-napthyl amine, NA (0.1–1.0 mg/L). In aqueous methanolic binary mixtures, the mean recoveries (RSD, LOD and LOQ) of AP were found to be 100.09% (0.053, 0.008 mg/L and 0.034 mg/L) for emission, 100.11% (0.141, 0.008 mg/L, 0.034 mg/L) for CWSFS, 100.05% (0.109, 0.007 mg/L and 0.032 mg/L) for first derivative CWSFS, 100.00% (0.148, 0.007 mg/L and 0.031 mg/L) for CESFS, 99.99% (0.109, 0.008 mg/L and 0.035 mg/L) for first derivative CESFS modes respectively. Additionally, for NA the mean recoveries (RSD, LOD and LOQ) were 100.29% (0.360, 0.046 mg/L and 0.204 mg/L) for emission, 100.06% (0.089, 0.098 mg/L, 0.436 mg/L) for CWSFS, 100.09% (0.144, 0.065 mg/L and 0.288 mg/L) for first derivative CWSFS, 100.05% (0.178, 0.077 mg/L and 0.339 mg/L) for CESFS, 100.03% (0.181, 0.082 mg/L and 0.364 mg/L) for first derivative CESFS modes respectively. Considering their safety and greenness, these methods might be considered as green tools using analytical eco-scale approaches (eco-scale score 88.0).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3

Similar content being viewed by others

References

  1. J. R. Lakowicz, Principles of fluorescence spectroscopy, 3rd edn. (Springer, 2006), pp. 1–26.

  2. C. D. Geddes, Clinical analysis and food safety evaluation, 1st edn. (Springer, 2010), pp. 95–117.

  3. J.B.F. Lloyd, Nature 231, 64 (1971)

    CAS  Google Scholar 

  4. S. Homdutt, J.V. Kumar, Z.H. Khan, Pollution 8, 637 (2022)

    CAS  Google Scholar 

  5. H. Sharma, V.K. Jain, Z.H. Khan, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 108, 268 (2013)

    Article  CAS  Google Scholar 

  6. E.L. Inman Jr., J.D. Winefordner, Anal. Chem. 1982, 54 (2008)

    Google Scholar 

  7. G.X. Hua, J. Broderick, K.T. Semple, K. Killham, I. Singleton, Environ. Pollut. 148, 176 (2007)

    Article  CAS  PubMed  Google Scholar 

  8. H.I.A. Shafy, M.S.M. Mansour, Egypt. J. Pet. 25, 107–123 (2016)

    Article  Google Scholar 

  9. O. Idowu, K.T. Semple, K. Ramadass, W. O’Connor, P. Hansbro, P. Thavamani, Environ. Int. 123, 543–557 (2019)

    Article  CAS  PubMed  Google Scholar 

  10. S. Singh, A. Ashesh, N.L. Devi, I.C. Yadav, Microchem. J. 183, 108005 (2022)

    Article  CAS  Google Scholar 

  11. A. Matuszewska, M. Czaja, Environ. Emiss. (2020). https://doi.org/10.5772/intechopen.92402

    Article  Google Scholar 

  12. X.P. Yang, B.F. Shi, Y.H. Zhang, J. Tang, D.C. Cai, Spectrochim. Acta Part A 69, 400–406 (2008)

    Article  Google Scholar 

  13. Y.Z. Yang, N.M. Peleato, R.L. Legge, R.C. Andrews, Environ. Sci. Water Res. Technol. 5, 315–324 (2019)

    Article  CAS  Google Scholar 

  14. S. Sunuwar, C.E. Manzanares, Icarus 370, 114689 (2021)

    Article  CAS  Google Scholar 

  15. C.X. Wei, P. Ren, Q.L. Cen, Y.X. Zhu, Y. Zhang, Talanta 195, 339 (2019)

    Article  CAS  PubMed  Google Scholar 

  16. A. Samokhvalov, Talanta 216, 120944 (2020)

    Article  CAS  PubMed  Google Scholar 

  17. P. John, I. Soutar, Anal. Chem. 48, 520 (1976)

    Article  CAS  Google Scholar 

  18. S. Mukherjee, S. Dhar, Result. Chem. 5, 100867 (2023)

    Article  CAS  Google Scholar 

  19. S. Rubio, A.G. Hens, M. Valcawel, Taltanta 33, 633–640 (1986)

    Article  CAS  Google Scholar 

  20. K.H. Kim, S.A. Jahan, E. Kabir, R.J.C. Brown, Environ. Int. 60, 71–80 (2013)

    Article  CAS  PubMed  Google Scholar 

  21. S. Wang, H. Yu, Int. J. Environ. Res. Public Health 2, 132–137 (2005)

    Article  PubMed  PubMed Central  Google Scholar 

  22. K. Zeng, H.M. Hwang, S. Dong, X. Shi, K. Wilson, J. Green, Y. Jiao, H. Yu, Environ. Toxicol. Chem. 23, 1400–1407 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Z. Yang, Y. Lin, S. Wang, X. Liu, P. Cullinan, K.F. Chung, J. Zhang, Environ. Sci. Technol. 55, 10569–10577 (2021)

    Article  CAS  PubMed  Google Scholar 

  24. R. Laumbach, J. Tong, L. Zhang, P.O. Strickland, A. Stern, N. Fiedler, H. Kipen, K.K. McNeil, P. Lioy, J. Zhang, J. Environ. Monit. 11, 153–159 (2009)

    Article  CAS  PubMed  Google Scholar 

  25. B. Ochirpurev, S.Y. Eom, A. Toriba, Y.D. Kim, H. Kim, Toxicol. Res. 38, 45–51 (2022)

    Article  CAS  PubMed  Google Scholar 

  26. G. Booth, Naphthalene derivatives: Ullmann's encyclopedia of industrial chemistry, vol. 23, (2012, Wiley-VCH), pp. 671–723.

  27. C. Qin, X. Hu, M.G. Waigi, B. Yang, Y. Gao, Sci. Total Environ. 725, 138542 (2020)

    Article  CAS  PubMed  Google Scholar 

  28. N. Hiromasa, T. Taku, E. Morinobu, F. Tsuneo, Carbon 66, 560–566 (2014)

    Article  Google Scholar 

  29. M. Du, B.J. Mullins, P. Franklin, A.W. Musk, N.S.J. Elliot, N.S. Berry, E. Junaldi, N. Klerk, A. Reid, Sci. Total Environ. 685, 723–728 (2019)

    Article  CAS  PubMed  Google Scholar 

  30. M. Nowakowski, I. Rykowska, R. Wolski, P. Andrzejewski, Environ. Processes 9, 2 (2022)

    Article  CAS  Google Scholar 

  31. B. Huang, M. Liu, X. Bi, C. Chaemfa, Z. Ren, X. Wang, G. Sheng, J. Fu, Atmos. Pollut. Res. 5, 210 (2014)

    Article  CAS  Google Scholar 

  32. A. Nadali, M. Leili, A. Afkhami, A. Bahrami, M. Karami, J. Environ. Chem. Eng. 9, 106253 (2021)

    Article  CAS  Google Scholar 

  33. D.L. Wadikar, M.O. Farooqui, A. Middey, A. Bafana, Y. Pakade, P. Naoghare, A.J. Vanisree, K. Kannan, S. Sivanesan, Environ. Monit. Assess. 193, 342–356 (2021)

    Article  CAS  PubMed  Google Scholar 

  34. J. Gong, T. Zhu, H. Kipen, D.Q. Rich, W. Huang, W.T. Lin, M. Hu, J. Zhang, Environ. Int. 85, 104–110 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Y.M.V. Bekkum, P.H.H.V. Broek, P.T.J. Scheepers, R.P. Bos, Chem. Res. Toxicol. 11, 1382–1390 (1998)

    Article  PubMed  Google Scholar 

  36. A. Andrade-Eiroa, G. de Armas, J.M. Estela, V. Cerda, Trends Anal. Chem. 29, 885 (2010)

    Article  CAS  Google Scholar 

  37. A. Gałuszka, P. Konieczka, Z.M. Migaszewski, J. Namiesnik, Trends Anal. Chem. 37, 61–72 (2012)

    Article  Google Scholar 

  38. M. Tobiszewski, Anal. Methods (2016). https://doi.org/10.1039/c6ay00478d

    Article  Google Scholar 

  39. R. El-Shaheny, F. Belal, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 226, 117603 (2020)

    Article  CAS  Google Scholar 

  40. APHA, Standard Methods for the Examination of Water and Wastewater, 21st edn. In American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC (2005)

  41. S. Mukherjee, S. Betal, A.P. Chattopadhyay, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 228, 17837 (2020)

    Google Scholar 

  42. EL. Inman Jr., L.A. Files, J.D. Winefordner, Analytical Chemistry, 58, 2156 (1986)

  43. N. Imaizumit, K. Hayakawa, Y. Suzuki, M. Miyazaki, Biomed. Chromatogr. 4, 108–112 (1990)

    Article  Google Scholar 

  44. D. Patra, A.K. Mishra, Talanta 55, 143 (2001)

    Article  CAS  PubMed  Google Scholar 

  45. S. Kotowicz, M. Siwy, M. Filapek, J.G. Malecki, K. Smolarek, J. Grzelak, S. Mackowski, A. Slodek, E.S. Balcerzak, J. Lumin. 183, 458 (2017)

    Article  CAS  Google Scholar 

  46. M. Cao, A. Fu, Z. Wang, J. Liu, N. Kong, X. Zong, H. Liu, J.J. Gooding, J. Phys. Chem. C 118, 2650 (2014)

    Article  CAS  Google Scholar 

  47. K. Kumar, M. Tarai, A.K. Mishra, Trends Anal. Chem. 97, 216–243 (2017)

    Article  CAS  Google Scholar 

  48. D. Patra, A.K. Mishra, Trends Anal. Chem. 21, 787–798 (2002)

    Article  CAS  Google Scholar 

  49. International Conference on Harmonization, ICH harmonized tripartite guideline. In: Validation of Analytical Procedure: Text and Methodology, Q2 (R1), Geneva, (2005)

Download references

Acknowledgements

Financial assistance received from the URS Scholarship, University of Kalyani, DST-PURSE, New Delhi and RUSA grant is gratefully acknowledged. We are thankful to the University of Kalyani for providing infrastructural facilities.

Funding

The funding has been received from University of Kalyani with Grant no. No. 1F-1/URS/ENVS/2019/DP-685, Date: 09.08.2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soma Mukherjee.

Ethics declarations

Conflict of interest

The authors have no conflict of interests that are directly or indirectly related to the work submitted for publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4645 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, S., Dhar, S. Various non-destructive SFS techniques for simultaneous recognition and monitoring of 1-amino pyrene and 1-napthyl amine in the mixture. ANAL. SCI. 39, 1551–1560 (2023). https://doi.org/10.1007/s44211-023-00368-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00368-8

Keywords

Navigation