Skip to main content
Log in

Using mandelic acid as an extraction solvent in the extraction of Cu(II) and Cd(II) from soil samples

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript


In this study, an efficient, green, and rapid sample preparation method based on mandelic acid dimer was proposed for the extraction of Cu(II) and Cd(II) from soil samples followed by flame atomic absorption spectrometry. In this research, for the first time, the liquid dimer was prepared by heating solid mandelic acid. Then the mixture of soil and a complexing agent was added into it. The mixture was transferred into a microwave oven. Diluted nitric acid solution as a dilution solvent was added. After centrifugation, two aliquots of the collected phase were removed and injected into the instrument. The relevant optimization parameters such as dimer volume, microwave exposure time, amount of complexing agent, and the type and volume of dilution solvent were investigated and optimized. Under the optimum conditions, detection limits were obtained 0.17 and 0.16 mg Kg−1 for Cu(II) and Cd(II), respectively. The linear ranges were 0.50–50 mg Kg−1 with coefficient of determination ≥ 0.9981. The developed method along with a reference method was applied for the analysis of the selected heavy metal ions in different soil samples and comparable results were obtained. Also, the method was performed on a certified reference material and the obtained concentrations compared with the certificated concentrations to assess accuracy of the proposed method.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others



Flame atomic absorption spectrometry


Inductively coupled plasma


Ionic liquid


Limit of detection


Limit of quantification


Mass spectrometry


Relative standard deviation


Sodium diethyldithiocarbamate


  1. A.S. Al-Radady, B.E. Davies, M.J. French, Sci. Total Environ. 145, 143–156 (1994)

    Article  CAS  Google Scholar 

  2. C.Y. Zhou, M.K. Wong, L.L. Koh, Y.C. Wee, Environ. Monit. Assess. 44, 605–615 (1997)

    Article  CAS  Google Scholar 

  3. H.A. Schroeder, The trace elements and nutrition (Faber and Faber, London, 1973)

    Google Scholar 

  4. T.M. Statham, K.A. Mumford, S.C. Stark, D.B. Gore, G.W. Stevens, Sep. Sci. Technol. (Philadelphia) 50, 2427–2435 (2015)

    CAS  Google Scholar 

  5. E.J. Underwood, Trace elements in human and animal nutrition (Academia, London, 1971)

    Google Scholar 

  6. L. Molognoni, J. Zarpelon, L.A. de Sá Ploêncio, J.N. Dos Santos, H. Daguer, Food Anal. Methods 10, 1787–1799 (2017)

    Article  Google Scholar 

  7. F.C. Rosa, F.A. Duarte, J.N.G. Paniz, G.M. Heidrich, M.A.G. Nunes, E.M.M. Flores, V.L. Dressler, Microchem. J. 123, 211–217 (2015)

    Article  CAS  Google Scholar 

  8. V. Topalidis, A. Harris, C.J. Hardaway, G. Benipal, Ch. Douvris, Microchem. J. 130, 213–220 (2017)

    Article  CAS  Google Scholar 

  9. J.M. Matong, L. Nyaba, Ph.N. Nomngongo, Ecotox. Environ. Safe. 135, 152–157 (2017)

    Article  CAS  Google Scholar 

  10. M. Schneider, H.R. Cadorim, B. Welz, E. Carasek, J. Feldmann, Talanta 188, 722–728 (2018)

    Article  CAS  PubMed  Google Scholar 

  11. R. Dobrowolski, A. Adamczyk, M. Otto, Talanta 113, 19–25 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. N. Jalbani, M. Soylak, Ecotox. Environ. Safe. 102, 174–178 (2014)

    Article  CAS  Google Scholar 

  13. P. Chaikhan, Y. Udnan, R.J.A. Bonney, WCh. Chaiyasith, Food Chem. 375, 131857 (2022)

    Article  CAS  PubMed  Google Scholar 

  14. B.T. Zaman, N.B. Turan, E.G. Bakirdere, S. Topal, O. Sağsöz, S. Bakirdere, Microchem. J. 157, 104981 (2020)

    Article  CAS  Google Scholar 

  15. I.S. Denmark, E. Begu, Z. Arslan, F.X. Han, J.M. Seiter-Moser, E.M. Pierce, Anal. Chim. Acta 1041, 68–77 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Akbulut, U. Cevik, A.A. Van, K.D. Wael, R.V. Grieken, Chemosphere 96, 16–22 (2014)

    Article  CAS  PubMed  Google Scholar 

  17. M.E. Himri, M. Errasfa, A.E. Kassimi, A. Naboulsi, A.E. Himri, M.E. Haddad, J. Ind. Chem. Soc. 99, 100684 (2022)

    Article  Google Scholar 

  18. E. Peralta, G. Pérez, G. Ojeda, J.M. Alcañiz, M. Valiente, M. López-Mesas, M.J. Sánchez-Martín, Sci. Total Environ. 726, 138670 (2020)

    Article  CAS  PubMed  Google Scholar 

  19. M. Qu, X. Guang, H. Liu, Y. Zhao, B. Huang, Environ. Pollut. 292, 118324 (2022)

    Article  CAS  PubMed  Google Scholar 

  20. W.I. Mortada, M.M. Hassanien, A.A. El-Asmy, Egypt. J. Basic Appl. Sci. 1, 184–191 (2014)

    Google Scholar 

  21. M. Babazadeh, R. Hosseinzadeh-Khanmiri, J. Abolhasani, E. Ghorbani-Kalhor, A. Hassanpour, RSC Adv. 5, 19884–19892 (2015)

    Article  CAS  Google Scholar 

  22. M. Efstathiou, I. Pashalidis, J. Radioanal. Nucl. Ch. 304, 133–137 (2015)

    Article  CAS  Google Scholar 

  23. I. López-García, R.E. Rivas, M. Hernández-Córdoba, Anal. Bioanal. Chem. 396, 3097–3102 (2010)

    Article  PubMed  Google Scholar 

  24. Z.Y. Hseu, Z.S. Chen, ChCh. Tsai, ChCh. Tsui, Sh.F. Cheng, Ch.L. Liu, H.T. Lin, Water Air Soil Poll. 141, 189–205 (2002)

    Article  CAS  Google Scholar 

  25. I.O. Akinyelem, O.S. Shokunbi, Food Chem. 173, 682–684 (2015)

    Article  Google Scholar 

  26. I.B. Qader, K. Prasad, Pharm. Res. 39, 2367–2377 (2022)

    Article  CAS  PubMed  Google Scholar 

  27. F. Soltanmohammadi, A. Jouyban, A. Shayanfar, Chem. Pap. 75, 439–453 (2021)

    Article  CAS  Google Scholar 

  28. D. Ge, Zh. Shan, T. Pang, X. Lu, B. Wang, Anal. Bioanal. Chem. 413, 3873–3880 (2021)

    Article  CAS  PubMed  Google Scholar 

  29. U. Alshana, M. Soylak, R. Lucena, S. Cárdenas, Chapter 18—deep eutectic solvents in microextraction, in Analytical sample preparation with nano- and other high- performance materials. ed. by R. Ren (Elsevier, 2021), pp.471–512

    Chapter  Google Scholar 

  30. M.B. Arain, E. Yilmaz, M. Soylak, J. Mol. Liq. 224, 538–543 (2016)

    Article  CAS  Google Scholar 

  31. M. Soylak, M. Koksal, Microchem. J. 147, 832–837 (2019)

    Article  CAS  Google Scholar 

  32. A. Turek, K. Wieczorek, W.M. Wolf, Sustain. 11, 1753–1762 (2019)

    Article  CAS  Google Scholar 

Download references


Saeed Mohammad Sorouraddin has received research grants from University of Tabriz.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Saeed Mohammad Sorouraddin.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

Informed consent

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvizzad, K., Farajzadeh, M.A. & Sorouraddin, S.M. Using mandelic acid as an extraction solvent in the extraction of Cu(II) and Cd(II) from soil samples. ANAL. SCI. 39, 1493–1499 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: