Skip to main content
Log in

Semi-quantitative microfluidic paper-based analytical device for ionic silica detection

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Silicate ions (SiO32−), or ionic silica, are known to cause silica scaling in industrial water applications when excess amounts are present; hence, concentrations must be monitored and kept at a constant low level. Ionic silica is conventionally measured by spectrophotometry in the form of its silicomolybdic complex based on the molybdenum blue reaction, but the operation process is complicated and not suitable for on-site detection. To solve these issues, microfluidic paper-based analytical devices (µPADs) have been gaining attention as portable, low-cost analytical devices suitable for on-site detection. The foldable origami type device described in this work enabled silica detection based on the molybdenum blue reaction, in the range of 50–1000 mg/L, with a practically detectable lowest concentration of 50 mg/L. The device showed selectivity for silicate ions and stability over 21 days when stored at 4 °C. The semi-quantitative analytical performance makes the proposed paper-based device attractive for on-site industrial monitoring.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Material availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M.W.F. Nielen, U.A.T. Brinkman, R.W. Frei, Industrial wastewater analysis by liquid chromatography with precolumn technology and diode-array detection. Anal. Chem. 57(4), 806–810 (1985)

    Article  CAS  Google Scholar 

  2. M. Doi, Control of plating solutions. Bunseki 5(7), 206–212 (2006)

    Google Scholar 

  3. F.A. Setiawan, E. Rahayuningsih, H.T.B.M. Petrus et al., Kinetics of silica precipitation in geothermal brine with seeds addition: minimizing silica scaling in a cold re-injection system. Geotherm Energy 7(1), 22 (2019)

    Article  Google Scholar 

  4. Japan Refrigeration and Air Conditioning Guideline, JRA-GL02, Guideline of Water Quality for Refrigeration and Air Conditioning Equipment (1998) (In Japanese)

  5. K. Sakai, S. Sato, Problems in silica analysis of boiler water. Hitachi Hyoron 43(4), 7–11 (1964). ((In Japanese))

    Google Scholar 

  6. L. Lunevich, Aqueous silica and silica polymerisation, in Desalination-Challenges and Opportunities edited by M. Hossein Davood Abadi Farahani, V. Vatanpour, A. Hooshang Taheri (IntechOpen, 2020).

  7. Y. Suzuki, Determination of inorganic trace components in seawater and salt samples using flow analytical systems. Bull. Soc. Sea Water Sci. Jpn. 67, 33–40 (2013)

    CAS  Google Scholar 

  8. C. Cheong, Y. Yamauchi, T. Miura, Determination of dissolved silica in seawater by ion-exclusion chromatography with post-column derivatization/silicomolybdenum yellow detection. Anal. Sci. 34(4), 477–481 (2018)

    Article  CAS  PubMed  Google Scholar 

  9. Japanese Industrial Standard (JIS): JIS K 01011998, Testing methods for industrial water (1998) (In Japanese).

  10. J.D.H. Strickland, The preparation and properties of silicomolybdic acid. I. The properties of alpha silicomolybdic acid. J. Am. Chem. Soc. 74(4), 862–867 (1952)

    Article  CAS  Google Scholar 

  11. Pack test for silica: Kyoritsu Chemical-Check Lab Corporation. https://kyoritsu-lab.co.jp/products/wak_sio2. Accessed 19 Jan 2023.

  12. A.W. Martinez, S.T. Phillips, M.J. Butte et al., Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. 119(8), 1340–1342 (2007)

    Article  Google Scholar 

  13. H. Kettler, K. White, S.J. Hawkes, Mapping the Landscape of Diagnostics for_Sexually Transmitted Infections: Key Findings and Recommendations (World Health Organization, Geneva, 2004)

    Google Scholar 

  14. K. Yamada, H. Shibata, K. Suzuki et al., Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. Lab Chip 17(7), 1206–1249 (2017)

    Article  CAS  Google Scholar 

  15. A.W. Martinez, S.T. Phillips, G.M. Whitesides et al., Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 82(1), 3–10 (2010)

    Article  CAS  PubMed  Google Scholar 

  16. J.M. Racicot, T.L. Mako, A. Olivelli et al., A paper-based device for ultrasensitive, colorimetric phosphate detection in seawater. Sensors 20(10), 2766 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. B.M. Jayawardane, I.D. McKelvie, S.D. Kolev, A paper-based device for measurement of reactive phosphate in water. Talanta 100, 454–460 (2012)

    Article  CAS  PubMed  Google Scholar 

  18. A. Manbohi, S.H. Ahmadi, Portable smartphone-based colorimetric system for simultaneous on-site microfluidic paper-based determination and mapping of phosphate, nitrite and silicate in coastal waters. Environ. Monit. Assess. 194(3), 190 (2022)

    Article  CAS  PubMed  Google Scholar 

  19. S. Karita, T. Kaneta, Acid–base titrations using microfluidic paper-based analytical devices. Anal. Chem. 86(24), 12108–12114 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. S. Karita, T. Kaneta, Chelate titrations of Ca2+ and Mg2+ using microfluidic paper-based analytical devices. Anal. Chim. Acta 924, 60–67 (2016)

    Article  CAS  PubMed  Google Scholar 

  21. K. Yamada, K. Suzuki, D. Citterio, Text-displaying colorimetric paper-based analytical device. ACS Sens. 2(8), 1247–1254 (2017)

    Article  CAS  PubMed  Google Scholar 

  22. D.M. Cate, W. Dungchai, J.C. Cunningham et al., Simple, distance-based measurement for paper analytical devices. Lab Chip 13(12), 2397 (2013)

    Article  CAS  PubMed  Google Scholar 

  23. H. Kudo, K. Maejima, Y. Hiruta et al., Microfluidic paper-based analytical devices for colorimetric detection of lactoferrin. SLAS Technol. 25(1), 47–57 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. Y. Lu, W. Shi, L. Jiang et al., Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30(9), 1497–1500 (2009)

    Article  CAS  PubMed  Google Scholar 

  25. E.M. Combatt Caballero, D. Palacio Badel, M. Palencia Luna, Organic acids to eliminate interference by phosphorus in the analysis of silicon by molecular absorption. Rev. Fac. Nac. Agron. 70(2), 8183–8189 (2017)

    Article  Google Scholar 

  26. P.G. Jeffery, A.D. Wilson, A combined gravimetric and photometric procedure for determining silica in silicate rocks and minerals. Analyst 85(1012), 478 (1960)

    Article  CAS  Google Scholar 

  27. K. Yamada, T.G. Henares, K. Suzuki et al., Distance-based tear lactoferrin assay on microfluidic paper device using interfacial interactions on surface-modified cellulose. ACS Appl. Mater. Interfaces 7(44), 24864–24875 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. G.K. Henry, A. Tiselius, Electrophoresis of proteins on filter paper. J. Gen. Physiol. 35, 89–119 (1951)

    Article  Google Scholar 

  29. A. Katoh, K. Maejima, Y. Hiruta et al., All-printed semiquantitative paper-based analytical devices relying on QR code array readout. Analyst 145, 6071–6078 (2020)

    Article  CAS  PubMed  Google Scholar 

  30. M. Masumoto, S. Ohta, M. Nakagawa et al., Colorimetric paper-based sarcosine assay with improved sensitivity. Anal. Bioanal. Chem. 414, 691–701 (2021)

    Article  PubMed  Google Scholar 

  31. I. Iwasaki, T. Tarutani, Silica in Water. V. Salt effect on the colorimetric determination of silica in concentrated salt solution. Bull. Chem. Soc. Jpn. 32(1), 32–36 (1959)

    Article  CAS  Google Scholar 

  32. M. Finster, C. Clark, J. Schroeder et al., Geothermal produced fluids: characteristics, treatment technologies, and management options. Renew. Sustain. Energy Rev. 50, 952–966 (2015)

    Article  Google Scholar 

  33. A. Ueda, H. Kato, T. Miyauchi, K. Kato, Investigation of pH control method to avoid silica scaling in the Sumikawa geothermal field. J. Geotherm. Res. Soc. Jpn. 25(3), 163–177 (2003)

    Google Scholar 

  34. E.A. Nagul, I.D. McKelvie, P. Worsfold et al., The molybdenum blue reaction for the determination of orthophosphate revisited: opening the black box. Anal. Chim. Acta 890, 60–82 (2015)

    Article  CAS  PubMed  Google Scholar 

  35. D. Dermendzhieva, G. Kostadinova, G. Petkov et al., Agroecological assessment of wastewater from municipal wastewater treatment plant by physico-chemical parameters. Agric. Sci. Technol. 7(2), 242–249 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported through a collaborative research agreement between Keio University and the Chemical Research Department, Research and Innovation Center, Mitsubishi Heavy Industries Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Citterio.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1083 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogawa, M., Katoh, A., Matsubara, R. et al. Semi-quantitative microfluidic paper-based analytical device for ionic silica detection. ANAL. SCI. 39, 1361–1370 (2023). https://doi.org/10.1007/s44211-023-00345-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00345-1

Keywords

Navigation