Skip to main content
Log in

Real-time observation of the precursor film for low viscosity liquids spreading on solid substrates by a customized differential laser interference microscopy

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

While static wettability is well treated with Young’s equation via its static contact angle, theoretical analyses for wetting dynamics are not yet reaching consensus due to a singularity of the spreading forces worked at the vapor/liquid/solid contact line. One plausible explanation to overcome the singularity problem is that there is a so-called precursor film spreading outside the apparent contact line. After its first finding in 1919, many researchers have attempted to visualize its shape. However, because its length and thickness are as small as micrometer and nanometer-order, respectively, its visualization still remains a challenging issue especially for low-viscosity liquids. In the present study, we developed a differential laser interference microscope, which has a thickness resolution of approximately 2 nm at the best, and applied it to the wetting front of 10 cSt of silicone oil spreading on a silicon wafer with an almost constant spreading velocity. As a result, the precursor film of 14 µm long and 108 nm thick was clearly visualized. While the macro contact line has a finite advancing contact angle of 4.0°, the gradient of the precursor film surface gradually decreased and converged to ~ 0.1° at the micro-contact angle. The shape of the precursor film was independent of the time after the dropping for the range of 600 s ± 10%, which is consistent to theoretical estimation. The present study demonstrated that our interferometer simultaneously achieved nanometer thickness resolutions, micrometer in-plane spatial resolution, and at least a millisecond temporal resolution with a simple optical setup.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. N. Savva, S. Kalliadasis, J. Eng. Math. 73, 3–16 (2010)

    Article  Google Scholar 

  2. J. Eggers, Phys. Fluids 16, 3491–3494 (2004)

    Article  CAS  Google Scholar 

  3. W.B. Hardy, Phil. Mag. 38, 49–55 (1919)

    Article  CAS  Google Scholar 

  4. U. Anand, T. Ghosh, Z. Aabdin, S. Koneti, X. Xu, F. Holsteyns, and U. Mirsaidov, Proc. Natl. Acad. Sci. Am. 118, (2021).

  5. P.G. de Gennes, Rev. Mod. Phys. 57, 827–863 (1985)

    Article  Google Scholar 

  6. N. Savva, and S. Kalliadasis, Europhys. Lett. 94, (2011).

  7. O.V. Voinov, Fluid Dyn. 11, 714–721 (1977)

    Article  Google Scholar 

  8. R. G. Cox, J. Fluid. Mech. 168, (1986).

  9. R.G. Cox, J. Fluid. Mech. 357, 249–278 (1998)

    Article  CAS  Google Scholar 

  10. T. Qian, X.P. Wang, P. Sheng, Phys. Rev. E 68, 016306 (2003)

    Article  Google Scholar 

  11. L. Leger, M. Erman, A.M. Guinet-Picard, D. Ausserre, C. Strazielle, Phys. Rev. Lett. 60, 2390–2393 (1988)

    Article  CAS  PubMed  Google Scholar 

  12. M.N. Popescu, G. Oshanin, S. Dietrich, A.M. Cazabat, J. Phys. Condens. Matter. 24, 243102 (2012)

    Article  CAS  PubMed  Google Scholar 

  13. D. Beaglehole, J. Phys. Chem. 93, 893–899 (1989)

    Article  CAS  Google Scholar 

  14. H.P. Kavehpour, B. Ovryn, G.H. McKinley, Phys. Rev. Lett. 91, 196104 (2003)

    Article  PubMed  Google Scholar 

  15. A. Hoang, H.P. Kavehpour, Phys. Rev. Lett. 106, 254501 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. I. Ueno, K. Hirose, Y. Kizaki, Y. Kisara, and Y. Fukuhara, J. Heat Transfer 134, (2012).

  17. S. Hashimoto, C. Hong, I. Ueno, J. Therm. Sci. Technol. 7, 487–496 (2012)

    Article  CAS  Google Scholar 

  18. L.H. Tanner, J. Phys. D Appl. Phys. 12, 1473–1484 (1979)

    Article  CAS  Google Scholar 

  19. M.D. Lelah, A. Marmur, J. Colloid. Interf. Sci. 82, 518–525 (1981)

    Article  CAS  Google Scholar 

  20. E. Shoji, T. Kaneko, T. Yonemura, M. Kubo, T. Tsukada, A. Komiya, Exp. Fluids 62, 206 (2021)

    Article  CAS  Google Scholar 

  21. S. Shiomoto, K. Yamaguchi, M. Kobayashi, Langmuir 34, 10276–10286 (2018)

    Article  CAS  PubMed  Google Scholar 

  22. M. Tani, R. Kawano, K. Kamiya, K. Okumura, Sci. Rep. 5, 10263 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  23. K.A. Melzak, F. Laye, S. Heissler, Langmuir 36, 10490–10493 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. W. Merzkirch, Appl. Opt. 13, 409–413 (1974)

    Article  CAS  PubMed  Google Scholar 

  25. G.M. Carlomagno, A. Rapillo, Exp. Fluids 4, 332–336 (1986)

    Article  CAS  Google Scholar 

  26. J.F. Joanny, P.G. de Gennes, J. Physique 47, 121–127 (1986)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by AMED under Grant Number JP21gm1510004 and JSPS KAKENHI under Grant Number JP19K05200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroharu Yui.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 76 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawamoto, M., Urashima, Sh., Banno, M. et al. Real-time observation of the precursor film for low viscosity liquids spreading on solid substrates by a customized differential laser interference microscopy. ANAL. SCI. 39, 1327–1332 (2023). https://doi.org/10.1007/s44211-023-00342-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00342-4

Keywords

Navigation