Skip to main content
Log in

Ultrasensitive colorimetric detection of tetracyclines based on in-situ growth of gold nanoflowers

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A colorimetric method based on in-situ generation of gold nanoflowers for the detection of tetracyclines (TCs) was proposed. We found that gold nanoflowers could be formed in the HAuCl4-NH2OH redox reaction directly without the addition of small-sized gold nanoparticles (Au NPs) as seeds when an alkaline borax buffer solution was employed as the reaction medium. Interestingly, the shape and size of the generated gold nanoflowers were regulated with TC. Briefly, large flower-like gold nanoparticles were formed with a low concentration of TC while small spherical gold nanoparticles were generated with a high concentration of TC. The generated gold nanoflowers exhibited different surface plasmon absorption (SPR) properties. Thus, a simple and rapid colorimetric method was established for the detection of TC antibiotics. This method exhibited high sensitivity for the detection of TC, oxytetracycline (OTC), and doxycycline (DC) with detection limits of 2.23 nM, 1.19 nM, and 5.81 nM, respectively. The proposed colorimetric method was applied to the determination of TC in both milk samples and water samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. J. Chen, G. Ying, W. Deng, J. Agric. Food Chem. 67, 7569–7586 (2019). https://doi.org/10.1021/acs.jafc.9b01334

    Article  CAS  PubMed  Google Scholar 

  2. X.G. Liu, D.L. Huang, C. Lai, G.M. Zeng, L. Qin, C. Zhang, H. Yi, B.S. Li, R. Deng, S.Y. Liu, Y.J. Zhang, TrAC-Trend. Anal. Chem. 109, 260–274 (2018). https://doi.org/10.1016/j.trac.2018.10.011

  3. O.G. Nagel, M.P. Molina, R.L. Althaus, Lett. Appl. Microbiol. 52, 245–252 (2011). https://doi.org/10.1111/j.1472-765X.2010.02990.x

    Article  CAS  PubMed  Google Scholar 

  4. X. Yang, C. Yang, X. Yan, J. Chromatogr. A 1304, 28–33 (2013). https://doi.org/10.1016/j.chroma.2013.06.064

    Article  CAS  PubMed  Google Scholar 

  5. T. Hakuta, H. Shinzawa, Y. Ozaki, Anal. Sci. 25, 1149–1153 (2009). https://doi.org/10.2116/analsci.25.1149

    Article  CAS  PubMed  Google Scholar 

  6. X. Qin, L. Zhao, Q. Huang, Y. Liu, Y. Xu, D. Qin, Y. Liu, Food Anal. Methods 11, 1493–1500 (2018). https://doi.org/10.1007/s12161-017-1139-0

    Article  Google Scholar 

  7. D. Moreno-González, M. Krulišová, L. Gámiz-Gracia, A.M. García-Campaña, Electrophoresis 39, 608–615 (2018). https://doi.org/10.1002/elps.201700288

    Article  CAS  PubMed  Google Scholar 

  8. C. Cháfer-Pericás, Á. Maquieira, R. Puchades, J. Miralles, A. Moreno, N. Pastor-Navarro, F. Espinós, Anal. Chim. Acta 662, 177–185 (2010). https://doi.org/10.1016/j.aca.2009.12.044

    Article  CAS  PubMed  Google Scholar 

  9. X. Yu, X. Zhang, Z. Wang, H. Jiang, Z. Lv, J. Shen, G. Xia, K. Wen, Anal. Chim. Acta 1001, 125–133 (2018). https://doi.org/10.1016/j.aca.2017.11.038

    Article  CAS  PubMed  Google Scholar 

  10. P. Wang, N. Yue, C. Liu, A. Fan, Anal. Sci. 38, 1073–1108 (2022). https://doi.org/10.1007/s44211-022-00136-0

    Article  CAS  PubMed  Google Scholar 

  11. D. Liu, X. Pan, W. Mu, C. Li, X. Han, Anal. Sci. 35, 367–370 (2019). https://doi.org/10.2116/analsci.18P392

    Article  CAS  PubMed  Google Scholar 

  12. H. Tan, Y. Chen, Sens. Actuators B Chem. 173, 262–267 (2012). https://doi.org/10.1016/j.snb.2012.06.090

    Article  CAS  Google Scholar 

  13. B. Tan, H. Zhao, L. Du, X. Gan, X. Quan, Biosens. Bioelectron. 83, 267–273 (2016). https://doi.org/10.1016/j.bios.2016.04.065

    Article  CAS  PubMed  Google Scholar 

  14. H. Qi, M. Teng, M. Liu, S. Liu, J. Li, H. Yu, C. Teng, Z. Huang, H. Liu, Q. Shao, A. Umar, T. Ding, Q. Gao, Z. Guo, J. Colloid Interface Sci. 539, 332–341 (2019). https://doi.org/10.1016/j.jcis.2018.12.047

    Article  CAS  PubMed  Google Scholar 

  15. S. Treetepvijit, S. Chuanuwatanakul, Y. Einaga, R. Sato, O. Chailapakul, Anal. Sci. 21, 531–535 (2005). https://doi.org/10.2116/analsci.21.531

    Article  CAS  PubMed  Google Scholar 

  16. L. Hao, H. Gu, N. Duan, S. Wu, Z. Wang, Anal. Methods 8, 7929–7936 (2016). https://doi.org/10.1039/C6AY02304E

    Article  CAS  Google Scholar 

  17. S. Dhakal, K. Chao, Q. Huang, M. Kim, W. Schmidt, J. Qin, C. Broadhurst, Sensors 18, 424 (2018). https://doi.org/10.3390/s18020424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. A. Marques, B. Veigas, A. Araújo, B. Pagará, P.V. Baptista, H. Águas, R. Martins, E. Fortunato, Sci. Rep. 9, 17922 (2019). https://doi.org/10.1038/s41598-019-54380-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. N. Li, S. Han, C. Zhang, S. Lin, X. Sha, W. Hasi, Anal. Sci. 36, 935–940 (2020). https://doi.org/10.2116/analsci.19P476

    Article  CAS  PubMed  Google Scholar 

  20. Y. Song, J. Qiao, W. Liu, L. Qi, Microchem. J. 157, 104871 (2020). https://doi.org/10.1016/j.microc.2020.104871

  21. X. Bai, Y. Wang, Z. Song, Y. Feng, Y. Chen, D. Zhang, L. Feng, Int. J. Mol. Sci. 21, 2480 (2020). https://doi.org/10.3390/ijms21072480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Y. Yeh, B. Creran, V.M. Rotello, Nanoscale 4, 1871–1880 (2012). https://doi.org/10.1039/C1NR11188D

    Article  CAS  PubMed  Google Scholar 

  23. J. Li, S. Fan, Z. Li, Y. Xie, R. Wang, B. Ge, J. Wu, R. Wang, Opt. Spectrosci. 117, 250–255 (2014). https://doi.org/10.1134/S0030400X14070212

  24. A.N. Sapadin, R. Fleischmajer, J. Am. Acad. Dermatol. 54, 258–265 (2006). https://doi.org/10.1016/j.jaad.2005.10.004

    Article  PubMed  Google Scholar 

  25. K.H. Wammer, M.T. Slattery, A.M. Stemig, J.L. Ditty, Chemosphere 85, 1505–1510 (2011). https://doi.org/10.1016/j.chemosphere.2011.08.051

    Article  CAS  PubMed  Google Scholar 

  26. L. Shen, J. Chen, N. Li, P. He, Z. Li, Anal. Chim. Acta 839, 83–90 (2014). https://doi.org/10.1016/j.aca.2014.05.021

    Article  CAS  PubMed  Google Scholar 

  27. N. Yue, D. Li, A. Fan, Anal. Sci. 37, 1583–1587 (2021). https://doi.org/10.2116/analsci.21P115

    Article  CAS  PubMed  Google Scholar 

  28. K.R. Brown, M.J. Natan, Langmuir 14, 726–728 (1998). https://doi.org/10.1021/la970982u

    Article  CAS  Google Scholar 

  29. I.Sz. Tódor, L. Szabó, O.T. Marişca, V. Chiş, N. Leopold, J Nanopart Res. 16, 2740 (2014) https://doi.org/10.1007/s11051-014-2740-4

  30. K. Mao, Y. Chen, Z. Wu, X. Zhou, A. Shen, J. Hu, J. Agric. Food Chem. 62, 10638–10645 (2014). https://doi.org/10.1021/jf5034015

    Article  CAS  PubMed  Google Scholar 

  31. L. Vera-Candioti, A.C. Olivieri, H.C. Goicoechea, Talanta 82, 213–221 (2010). https://doi.org/10.1016/j.talanta.2010.04.023

    Article  CAS  PubMed  Google Scholar 

  32. L.L. Zhao, X.H. Ji, X.J. Sun, J. Li, W.S. Yang, X.G. Peng, J. Phys. Chem. C 113, 16645–16651 (2009). https://doi.org/10.1021/jp9058406

    Article  CAS  Google Scholar 

  33. P. He, L. Shen, R. Liu, Z. Luo, Z. Li, Anal. Chem. 83, 6988–6995 (2011). https://doi.org/10.1021/ac200769f

    Article  CAS  PubMed  Google Scholar 

  34. M. Qi, C. Tu, Y. Dai, W. Wang, A. Wang, J. Chen, Anal. Methods. 10, 3402–3407 (2018). https://doi.org/10.1039/C8AY00713F

    Article  CAS  Google Scholar 

  35. F. Yuan, H. Zhao, X. Wang, X. Quan, Anal. Lett. 50, 544–553 (2017). https://doi.org/10.1080/00032719.2016.1187160

    Article  CAS  Google Scholar 

  36. Y. Wang, Y. Sun, H. Dai, P. Ni, S. Jiang, W. Lu, Z. Li, Z. Li, Sens. Actuators B Chem. 236, 621–626 (2016). https://doi.org/10.1016/j.snb.2016.06.029

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (21475094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiping Fan.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4236 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Liang, R. & Fan, A. Ultrasensitive colorimetric detection of tetracyclines based on in-situ growth of gold nanoflowers. ANAL. SCI. 39, 1223–1231 (2023). https://doi.org/10.1007/s44211-023-00332-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00332-6

Keywords

Navigation