Skip to main content
Log in

Laser scattering centrifugal liquid sedimentation method for the accurate quantitative analysis of mass-based size distributions of colloidal silica

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

This paper proposes a laser scattering centrifugal liquid sedimentation (LS-CLS) method for the accurate quantitative analysis of the mass-based size distributions of colloidal silica. The optics comprised a laser diode light source and multi-pixel photon-counting detector for detecting scattered light intensity. The unique optics can only detect the light scattered by a sample through the interception of irradiated light. The developed centrifugal liquid sedimentation (CLS) method comprised a light-emitting diode and silicon photodiode detector for detecting transmittance light attenuation. The CLS apparatus could not accurately measure quantitative volume- or mass-based size distribution of poly-dispersed suspensions, such as colloidal silica, because the detecting signal includes both transmitted and scattered light. The LS-CLS method exhibited improved quantitative performance. Moreover, the LS-CLS system allowed the injection of samples with concentrations higher than that permitted by other particle size distribution measurement systems with particle size classification units using size-exclusion chromatography or centrifugal field-flow fractionation. The proposed LS-CLS method achieved an accurate quantitative analysis of the mass-based size distribution using both centrifugal classification and laser scattering optics. In particular, the system could measure the mass-based size distribution of approximately 20 mg mL−1 poly-dispersed colloidal silica samples, such as in a mixture of the four mono-dispersed colloidal silica, with high resolution and precision, thereby demonstrating high quantitative performance. The measured size distributions were compared with those observed through transmission electron microscopy. The proposed system can be used in practical setups to achieve a reasonable degree of consistency for determining particle size distribution in industrial applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

C A :

Absorption cross section of the light path (m2)

Cs :

Scattering cross section of the light path (m2)

F a (x):

Area-based size distribution (–)

F v (x):

Volume-based size distribution (–)

F m (x):

Mass-based size distribution (–)

h :

Sedimentation distance (m)

h r :

Distance from the rotation axis to the measurement zone (m)

h s :

Distance from the rotation axis to the liquid–air interface of the sample (m)

I A 0 :

Transmitted light intensity when the reference cell passes through the light path (–)

I A i :

Transmitted light intensity when the sample cell passes through the light path (–)

I S0 :

Scattered light intensity when the reference cell passes through the light path (–)

I Si :

Scattered light intensity when the sample cell passes through the light path (–)

k :

Optical coefficient (–)

l :

Light path length of the cell (m)

n i :

Particle number per mass unit for particle size xi (–)

Q A :

Absorption extinction coefficient (–)

Q E :

Extinction coefficient (–)

Q S :

Scattering extinction coefficient (–)

t :

Sedimentation time (s)

t 0 :

Sedimentation time at t = 0 (s)

t end :

Sedimentation time at the end of the sedimentation process (s)

t’ :

Sedimentation time at α = 0 (s)

v :

Terminal sedimentation velocity (m s−1)

x :

Stokes diameter (m)

x i :

Maximum diameter size of the sample (m)

α :

Centrifugal angular acceleration (rad s2)

η 0 :

Liquid viscosity (Pa s)

ρ :

Particle density (kg m−3)

ρ 0 :

Liquid density (kg m−3)

ω :

Centrifugal angular velocity before t = t’, (rad s1)

ω 0 :

Centrifugal angular velocity at t = 0 (rad s1)

ω max :

Centrifugal angular velocity after t = t’ (rad s1)

References

  1. S. Ichimura, Y. Iijima, T. Yamaguchi, M. Kanai, Y. Shirakawabe, K. Ito, T. Fujimoto, Expert Series for Analytical Chemistry Instrumentation Analysis, Vol.8, Measurement of Nanoparticles (Kyoritsu Publication, Japan, 2018), pp. 1–38

  2. ISO 22412: Particle size analysis - Dynamic light scattering (DLS), (International Electrotechnical Commission, Switzerland, 2017)

  3. S. Mori, H.G. Barth, Size exclusion chromatography (Springer Laboratory, New York, 1999), pp.11–29

    Google Scholar 

  4. ISO/TS 21362: Nanotechnologies - Analysis of nano-objects using asymmetrical-flow and centrifugal field-flow fractionation (International Electrotechnical Commission, Switzerland, 2018)

  5. T. Yamaguchi, Y. Azuma, K. Okuyama, Part. Part. Syst. Charac. (2006). https://doi.org/10.1002/ppsc.200601029

    Article  Google Scholar 

  6. H. Kato, A. Nakamura, H. Banno, J. Chromatogr. A (2019). https://doi.org/10.1016/j.chroma.2019.05.055

    Article  PubMed  Google Scholar 

  7. K. Jores, W. Mehnert, M. Drechsler, H. Bunjes, C. Johann, K. Mader, J. Control Release (2004). https://doi.org/10.1016/j.jconrel.2003.11.012

    Article  PubMed  Google Scholar 

  8. H. Kato, A. Nakamura, K. Takahashi, S. Kinugasa, Nanomaterials (2012). https://doi.org/10.3390/nano2010015

    Article  PubMed  PubMed Central  Google Scholar 

  9. F. Aureli, M.D. Amato, A. Raggi, F. Cubadda, J. Anal. At. Spectr. (2015). https://doi.org/10.1039/C4JA00478G

    Article  Google Scholar 

  10. F. Caputo, A. Arnold, M. Bacia, W.L. Ling, E. Rustique, I. Texier, A.P. Mello, A.-C. Couffin, Mol. Pharm. (2019). https://doi.org/10.1021/acs.molpharmaceut.8b01033

    Article  PubMed  PubMed Central  Google Scholar 

  11. K.D. Caldwell, H.K. Jones, J.C. Giddings, Measurement of the size and density of colloidal particles by combining. Coll. Surf. (1986). https://doi.org/10.1016/0166-6622(86)80199-8

    Article  Google Scholar 

  12. A.A. Galyean, W.N. Vreeland, J.J. Filliben, R. David Holbrook, D.C. Ripple, H.S. Weinberg, Anal. Chim. Acta (2015). https://doi.org/10.1016/j.aca.2015.06.027

    Article  PubMed  PubMed Central  Google Scholar 

  13. F. Chu, C. Graillat, J. Guillot, A. Guyot, Coll. Polym. Sci. (1997). https://doi.org/10.1007/s003960050176

    Article  Google Scholar 

  14. T. Yamaguchi, T. Mori, K. Aoki, R. Oda, M. Yasutake, A. Nakamura, K. Takahashi, T. Sigehuzi, H. Kato, Anal. Sci. (2020). https://doi.org/10.2116/analsci.19P351

    Article  PubMed  Google Scholar 

  15. ISO 13318–2: Determination of particle size distribution by centrifugal liquid sedimentation methods – Part 2: Photocentrifuge method (International Electrotechnical Commission, Switzerland, 2007)

  16. T. Yamaguchi, Bunseki (2021) https://bunseki.jsac.jp/wp-content/uploads/2021/12/p732.pdf

  17. Y. Kato, T. Morimoto, K. Kobashi, T. Yamaguchi, T. Mori, T. Sugino, T. Okazaki, T. Yamaguchi, Powder Technol. (2022). https://doi.org/10.1016/j.powtec.2022.117663

    Article  Google Scholar 

  18. L.A. Fielding, O.O. Mykhaylyk, S.P. Armes, P.W. Fowler, Langmuir (2012). https://doi.org/10.1021/la204841n

    Article  PubMed  Google Scholar 

  19. D. Lerche et al., KONA Powder Particle J (2019). https://doi.org/10.1435/kona.2019012

    Article  Google Scholar 

  20. C. Minelli, D. Bartczak, R. Peters, J. Rissler, A. Undas, A. Sikora, E. Sjostrom, H. Goenaga-Infante, A.G. Shard, Langmuir (2019). https://doi.org/10.1021/acs.langmuir.8b04209

    Article  PubMed  Google Scholar 

  21. M. Kamiti, D. Boldrige, L.M. Ndoping, E.E. Remsen, Anal. Chem. (2012). https://doi.org/10.1021/ac3022086

    Article  PubMed  Google Scholar 

  22. B. Akpinar, L.A. Fielding, V.J. Cunningham, Y. Ning, O.O. Mykhayluk, P.W. Fowler, S.P. Armes, Macromolecules (2016). https://doi.org/10.1021/acs.macromol.6b00987

    Article  PubMed  PubMed Central  Google Scholar 

  23. H. Fissan, S. Ristig, H. Kaminski, C. Asbach, M. Epple, Anal. Methods (2014). https://doi.org/10.1039/c4ay01203h

    Article  Google Scholar 

  24. C. Minelli, A. Sikora, R. Garcia-Diez, K. Sparnacci, C. Gollwitzer, M. Krumrey, A.G. Shard, Anal. Methods (2018). https://doi.org/10.1039/c8ay00237a

    Article  Google Scholar 

  25. F. Waag, Y. Li, A.R. Ziefub, E. Bertin, M. Kamp, V. Duppel, G. Marzun, L. Kienle, S. Barcikowski, RSC Adv. (2019). https://doi.org/10.1039/c9ra03254a

    Article  PubMed  PubMed Central  Google Scholar 

  26. K. Higashitani, K. Nakamura, T. Shimamura, T. Fukasawa, K. Tsuchiya, Y. Mori, Langmuir (2017). https://doi.org/10.1021/acs.langmuir.7b00932

    Article  PubMed  Google Scholar 

  27. J.R. Hodkinson, Br. J. Appl. Phys. (1963). https://doi.org/10.1088/0508-3443/14/12/429

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks Dr. Yasushige Mori of Doshisha University for helpful technical discussions regarding the Mie scattering theory and results of the proposed system. Dr. Yasushige Mori also facilitated the procurement of both SP-300 and HF-50 samples from the Fine Chemicals Research Center of JGC Catalysts and Chemicals, Ltd. and Fuji Chemical Co. Ltd., respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuji Yamaguchi.

Ethics declarations

Conflict of interest

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, T. Laser scattering centrifugal liquid sedimentation method for the accurate quantitative analysis of mass-based size distributions of colloidal silica. ANAL. SCI. 39, 1115–1128 (2023). https://doi.org/10.1007/s44211-023-00321-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00321-9

Keywords

Navigation