Abstract
Efficient enzymatic digestion methods are critical for the characterization and identification of glycans. Glycan hydrolysis enzymes are widely utilized for the identification of glycoprotein or glycolipid glycans. The commonly utilized in solution glycan hydrolysis methods require several hours of incubation with enzymes for complete removal of their target monosaccharides. To develop an efficient and simple method for the rapid release of monosaccharides from glycoprotein glycans, we fabricated exoglycosidase-impregnated acrylamide gels in an automatic pipette tip. Our automated enzymatic reactors are based on the simple photochemical copolymerization of monomers comprising acrylamide and methylene-bis-acrylamide-containing enzymes with an azobis compound functioning as the photocatalytic initiator. After filling the tip of the automatic pipette with these acrylamide solutions, polymerization of the acrylamide gel solution was performed by irradiation with a LED. The immobilized enzymes maintained their activities in the pipette tips and their action was completed by fully automatic pipetting for 10 to 30 min. We utilized 8-aminopyrene-1, 3, 6-trisulfonic acid (APTS)-labeled glycans as a substrate and measured by capillary electrophoresis (CE) before and after enzymatic digestion. We demonstrated that this method exhibited quantitative enzymatic and specific cleavage of monosaccharides from glycoprotein glycans.
Graphical abstract
Similar content being viewed by others
Data availability
The datasets generated and analyzed during the current study are available upon reasonable request from the corresponding author.
References
C. Reily, T.J. Stewart, M.B. Renfrow, J. Novak, Nat. Rev. Nephrol. 15, 346 (2019). https://doi.org/10.1038/s41581-019-0129-4
S. Yamamoto, M. Kinoshita, S. Suzuki, J. Pharm. Biomed. Anal. 130, 273 (2016). https://doi.org/10.1016/j.jpba.2016.07.015
R. Jefferis, Nat. Rev. Drug Discov. 8, 226 (2009). https://doi.org/10.1038/nrd2804
L. Byrd-Leotis, N. Jia, S. Dutta, J.F. Trost, C. Gao, S.F. Cummings, T. Braulke, S. Müller-Loennies, J. Heimburg-Molinaro, D.A. Steinhauer, R.D. Cummings, Sci. Adv. 5, 2554 (2019). https://doi.org/10.1126/sciadv.aav2554
M. Kinoshita, K. Yamada, J. Pharm. Biomed. Anal. 207, 114424 (2022). https://doi.org/10.1016/j.jpba.2021.114424
S. Jorge, K. Pereira, H. López-Fernández, W. LaFramboise, R. Dhir, J. Fernández-Lodeiro, C. Lodeiro, H.M. Santos, J.L. Capelo-Martínez, Talanta 206, 120180 (2020). https://doi.org/10.1016/j.talanta.2019.120180
Z. Guo, J. Cheng, H. Sun, W. Sun, Rapid Commun. Mass Spectrom. 31, 1353 (2017). https://doi.org/10.1002/rcm.7913
H. Kim, H.S. Kim, D. Lee, D. Shin, D. Shin, J. Kim, J. Kim, Anal. Chem. 89, 10655 (2017). https://doi.org/10.1021/acs.analchem.7b02169
M. Safdar, J. Sproß, J. Jänis, J. Chromatogr. A 1324, 1 (2014). https://doi.org/10.1016/j.chroma.2013.11.045
M.R. Robinson, L.A. Vasicek, C. Hoppmann, M. Li, G. Jokhadze, D.S. Spellman, Analyst 145, 3148 (2020). https://doi.org/10.1039/D0AN00190B
Y.-J. Tan, W.-H. Wang, Y. Zheng, J. Dong, G. Stefano, F. Brandizzi, R.M. Garavito, G.E. Reid, M.L. Bruening, Anal. Chem. 84, 8357 (2012). https://doi.org/10.1021/ac3019153
L. Sun, G. Zhu, X. Yan, S. Mou, N.J. Dovichi, J. Chromatogr. A 1337, 40 (2014). https://doi.org/10.1016/j.chroma.2014.02.014
D. Turoňová, L. Kujovská Krčmová, F. Švec, Trends Anal. Chem. 143, 116404 (2021). https://doi.org/10.1016/j.trac.2021.116404
R. Farsang, N. Kovács, M. Szigeti, H. Jankovics, F. Vonderviszt, A. Guttman, Anal. Chim. Acta 1215, 339906 (2022). https://doi.org/10.1016/j.aca.2022.339906
H.W. Hahn, M. Rainer, T. Ringer, C.W. Huck, G.K. Bonn, J. Proteome Res. 8, 4225 (2009). https://doi.org/10.1021/pr900188x
J. Chen, P. Shah, H. Zhang, Anal. Chem. 85, 10670 (2013). https://doi.org/10.1021/ac401812b
M. Alexovič, P.L. Urban, H. Tabani, J. Sabo, Clin. Chim. Acta 507, 104 (2020). https://doi.org/10.1016/j.cca.2020.04.015
S. Yamamoto, M. Ueda, M. Kasai, Y. Ueda, M. Kinoshita, S. Suzuki, J. Pharm. Biomed. Anal. 179, 112995 (2020). https://doi.org/10.1016/j.jpba.2019.112995
M. Kinoshita, Y. Nakatani, K. Yamada, S. Yamamoto, S. Suzuki, J. Pharm. Biomed. Anal. 195, 113875 (2021). https://doi.org/10.1016/j.jpba.2020.113875
Y. Yagi, S. Yamamoto, K. Kakehi, T. Hayakawa, Y. Ohyama, S. Suzuki, Electrophoresis 32, 2979 (2011). https://doi.org/10.1002/elps.201100126
S. Yamamoto, M. Kinoshita, T. Ikegami, S. Suzuki, J. Chromatogr. A 1566, 44 (2018). https://doi.org/10.1016/j.chroma.2018.06.050
R. Reid Townsend, M.R. Hardy, D.A. Cumming, J.P. Carver, B. Bendiak, Anal. Biochem. 182, 1 (1989). https://doi.org/10.1016/0003-2697(89)90708-2
M. Yamagami, Y. Matsui, T. Hayakawa, S. Yamamoto, M. Kinoshita, S. Suzuki, J. Chromatogr. A 1496, 157 (2017). https://doi.org/10.1016/j.chroma.2017.03.019
Acknowledgements
This work was supported in part by the Grants-in-Aid for Scientific Research (20K06993 and 21K06505) from the Japan Society for the Promotion of Science (JSPS).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yamamoto, S., Kato, N., Wada, M. et al. A rapid and convenient enzyme digestion method for the analysis of N-glycans using exoglycosidase-impregnated polyacrylamide gels fabricated in an automatic pipette tip. ANAL. SCI. 39, 1041–1046 (2023). https://doi.org/10.1007/s44211-023-00314-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s44211-023-00314-8