Abstract
With development of nanotechnologies, applications exploiting nanospaces such as single-molecule analysis and high-efficiency separation have been reported, and understanding properties of fluid flows in 101 nm to 102 nm scale spaces becomes important. Nanofluidics has provided a platform of nanochannels with defined size and geometry, and revealed various unique liquid properties including higher water viscosity with dominant surface effects in 102 nm spaces. However, experimental investigation of fluid flows in 101 nm spaces is still difficult owing to lack of fabrication procedure for 101 nm nanochannels with smooth walls and precisely controlled geometry. In the present study, we established a top-down fabrication process to realize fused-silica nanochannels with 101 nm scale size, 100 nm roughness and rectangular cross-sectional shape with an aspect ratio of 1. Utilizing a method of mass flowmetry developed by our group, accurate measurements of ultra-low flow rates in sub-100 nm nanochannels with sizes of 70 nm and 100 nm were demonstrated. The results suggested that the viscosity of water in these sub-100 nm nanochannels was approximately 5 times higher than that in the bulk, while that of dimethyl sulfoxide was similar to the bulk value. The obtained liquid permeability in the nanochannels can be explained by a hypothesis of loosely structured liquid phase near the wall generated by interactions between the surface silanol groups and protic solvent molecules. The present results suggest the importance of considering the species of solvent, the surface chemical groups, and the size and geometry of nanospaces when designing nanofluidic devices and membranes.
Graphical abstract
Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
G.M. Whitesides, Nature 442, 368 (2006)
K. Mawatari, Y. Kazoe, A. Aota, T. Tsukahara, K. Sato, T. Kitamori, J. Flow. Chem. 1, 3 (2011)
K. Shirai, K. Mawatari, R. Ohta, H. Shimizu, T. Kitamori, Analyst 143, 943 (2018)
B.R. Cipriany, P.J. Murphy, J.A. Hagarman, A. Cerf, D. Latulippe, S.L. Levy, J.J. Benítez, C.P. Tan, J. Topolancik, P.D. Soloway, H.G. Craighead, Proc. Natl. Acad. Sci. USA. 109, 8477 (2012)
Y. Kazoe, T. Ugajin, R. Ohta, K. Mawatari, T. Kitamori, Lab Chip 19, 3844 (2019)
R. Ishibashi, K. Mawatari, T. Kitamori, Small 258, 129 (2007)
T. Nakao, Y. Kazoe, E. Mori, K. Morikawa, T. Fukasawa, A. Yoshizaki, T. Kitamori, Analyst 144, 7200 (2019)
M.E. Warkiani, A.A.S. Bhagat, B.L. Khoo, J. Han, C.T. Lim, H.Q. Gong, A.G. Fane, ACS Nano 2013, 7 (1882)
J. Huang, J. Zhang, M. Eikerling, Faraday Discuss. 193, 427 (2016)
J.N. Israelachvili, R.M. Pashley, Nature 306, 249 (1983)
D.B. Asay, S.H. Kim, J. Phys. Chem. B 109, 16760 (2005)
J.-P. Korb, M.W. Hodges, T. Gobron, R.G. Bryant, Phys. Rev. E 60, 3097 (1999)
S. Fujita, A. Koiwai, M. Kawasumi, S. Inagaki, Chem. Mater. 25, 1584 (2013)
T. Tsukahara, A. Hibara, Y. Ikeda, T. Kitamori, Angew. Chem. Int. Ed. 46, 1180 (2007)
T. Tsukahara, W. Mizutani, K. Mawatari, T. Takehiko, J. Phys. Chem. B 113, 10808 (2009)
H. Chinen, K. Mawatari, Y. Pihosh, K. Morikawa, Y. Kazoe, T. Tsukahara, T. Kitamori, Angew. Chem. Int. Ed. 51, 3573 (2012)
K. Morikawa, Y. Kazoe, K. Mawatari, T. Tsukahara, T. Kitamori, Anal. Chem. 87, 1475 (2015)
Y. Kazoe, S. Kubori, K. Morikawa, K. Mawatari, T. Kitamori, Anal. Sci. 38, 281 (2022)
L.-M. Omota, O. Iulian, O. Ciocîrlan, I. Niţă, Rev. Roum. Chim. 53, 977 (2008)
N.A. Mortensen, A. Kristensen, Appl. Phys. Lett. 92, 063110 (2008)
V.-N. Phan, C. Yang, N.-T. Nguyen, Microfluid Nanofluid 7, 519 (2009)
U. Raviv, P. Laurat, J. Klein, Nature 413, 51 (2001)
U. Raviv, S. Perkin, P. Laurat, J. Klein, Langmuir 20, 5322 (2004)
Y. Zhu, S. Granick, Phys. Rev. Lett. 87, 096104 (2001)
H. Sakuma, K. Otsuki, K. Kurihara, Phys. Rev. Lett. 96, 046104 (2006)
M. Kasuya, M. Hino, H. Yamada, M. Mizukami, H. Mori, S. Kajita, T. Ohmori, A. Suzuki, K. Kurihara, J. Phys. Chem. C 117, 13540 (2013)
D. Feng, X. Li, X. Wang, J. Li, X. Zhang, Int. J. Heat Mass Transfer 118, 900 (2018)
J. Haneveld, N.R. Tas, N. Brunets, H.V. Jansen, M. Elwenspoek, Appl. Phys. Lett. 104, 014309 (2008)
L. Li, Y. Kazoe, K. Mawatari, Y. Sugii, T. Kitamori, J. Phys. Chem. Lett. 3, 2447 (2012)
V.D. Sobolev, N.V. Churaev, M.G. Velarde, Z.M. Zorin, J. Colloid Interface Sci. 222, 51 (2000)
K. Ikeda, Y. Kazoe, T. Tsukahara, K. Mawatari, T. Kitamori, Proc MicroTAS 2014, 61 (2014)
H. Eyring, J. Chem. Phys. 4, 283 (1936)
Y. Kazoe, K. Shibata, T. Kitamori, Anal. Chem. 93, 13260 (2021)
Y. Andoh, K. Kurahashi, H. Sakuma, K. Yasuoka, K. Kurihara, Chem. Phys. Lett. 448, 253 (2007)
Acknowledgements
This work was supported by a Kakenhi Grant-in-Aid (No. JP21000007) from the Japan Society for the Promotion of Science (JSPS) and TEPCO Memorial Foundation. Fabrication facilities were provided in part by the Academic Consortium for Nano and Micro Fabrication from four universities (The University of Tokyo, Tokyo Institute of Technology, Keio University and Waseda University, Japan).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Rights and permissions
About this article
Cite this article
Kazoe, Y., Ikeda, K., Mino, K. et al. Quantitative characterization of liquids flowing in geometrically controlled sub-100 nm nanofluidic channels. ANAL. SCI. 39, 779–784 (2023). https://doi.org/10.1007/s44211-023-00311-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s44211-023-00311-x