Skip to main content
Log in

Quantitative characterization of liquids flowing in geometrically controlled sub-100 nm nanofluidic channels

  • Rapid Communication
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

With development of nanotechnologies, applications exploiting nanospaces such as single-molecule analysis and high-efficiency separation have been reported, and understanding properties of fluid flows in 101 nm to 102 nm scale spaces becomes important. Nanofluidics has provided a platform of nanochannels with defined size and geometry, and revealed various unique liquid properties including higher water viscosity with dominant surface effects in 102 nm spaces. However, experimental investigation of fluid flows in 101 nm spaces is still difficult owing to lack of fabrication procedure for 101 nm nanochannels with smooth walls and precisely controlled geometry. In the present study, we established a top-down fabrication process to realize fused-silica nanochannels with 101 nm scale size, 100 nm roughness and rectangular cross-sectional shape with an aspect ratio of 1. Utilizing a method of mass flowmetry developed by our group, accurate measurements of ultra-low flow rates in sub-100 nm nanochannels with sizes of 70 nm and 100 nm were demonstrated. The results suggested that the viscosity of water in these sub-100 nm nanochannels was approximately 5 times higher than that in the bulk, while that of dimethyl sulfoxide was similar to the bulk value. The obtained liquid permeability in the nanochannels can be explained by a hypothesis of loosely structured liquid phase near the wall generated by interactions between the surface silanol groups and protic solvent molecules. The present results suggest the importance of considering the species of solvent, the surface chemical groups, and the size and geometry of nanospaces when designing nanofluidic devices and membranes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. G.M. Whitesides, Nature 442, 368 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. K. Mawatari, Y. Kazoe, A. Aota, T. Tsukahara, K. Sato, T. Kitamori, J. Flow. Chem. 1, 3 (2011)

    Article  CAS  Google Scholar 

  3. K. Shirai, K. Mawatari, R. Ohta, H. Shimizu, T. Kitamori, Analyst 143, 943 (2018)

    Article  CAS  PubMed  Google Scholar 

  4. B.R. Cipriany, P.J. Murphy, J.A. Hagarman, A. Cerf, D. Latulippe, S.L. Levy, J.J. Benítez, C.P. Tan, J. Topolancik, P.D. Soloway, H.G. Craighead, Proc. Natl. Acad. Sci. USA. 109, 8477 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Y. Kazoe, T. Ugajin, R. Ohta, K. Mawatari, T. Kitamori, Lab Chip 19, 3844 (2019)

    Article  CAS  PubMed  Google Scholar 

  6. R. Ishibashi, K. Mawatari, T. Kitamori, Small 258, 129 (2007)

    Google Scholar 

  7. T. Nakao, Y. Kazoe, E. Mori, K. Morikawa, T. Fukasawa, A. Yoshizaki, T. Kitamori, Analyst 144, 7200 (2019)

    Article  CAS  PubMed  Google Scholar 

  8. M.E. Warkiani, A.A.S. Bhagat, B.L. Khoo, J. Han, C.T. Lim, H.Q. Gong, A.G. Fane, ACS Nano 2013, 7 (1882)

    Google Scholar 

  9. J. Huang, J. Zhang, M. Eikerling, Faraday Discuss. 193, 427 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. J.N. Israelachvili, R.M. Pashley, Nature 306, 249 (1983)

    Article  CAS  Google Scholar 

  11. D.B. Asay, S.H. Kim, J. Phys. Chem. B 109, 16760 (2005)

    Article  CAS  PubMed  Google Scholar 

  12. J.-P. Korb, M.W. Hodges, T. Gobron, R.G. Bryant, Phys. Rev. E 60, 3097 (1999)

    Article  CAS  Google Scholar 

  13. S. Fujita, A. Koiwai, M. Kawasumi, S. Inagaki, Chem. Mater. 25, 1584 (2013)

    Article  CAS  Google Scholar 

  14. T. Tsukahara, A. Hibara, Y. Ikeda, T. Kitamori, Angew. Chem. Int. Ed. 46, 1180 (2007)

    Article  CAS  Google Scholar 

  15. T. Tsukahara, W. Mizutani, K. Mawatari, T. Takehiko, J. Phys. Chem. B 113, 10808 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. H. Chinen, K. Mawatari, Y. Pihosh, K. Morikawa, Y. Kazoe, T. Tsukahara, T. Kitamori, Angew. Chem. Int. Ed. 51, 3573 (2012)

    Article  CAS  Google Scholar 

  17. K. Morikawa, Y. Kazoe, K. Mawatari, T. Tsukahara, T. Kitamori, Anal. Chem. 87, 1475 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. Y. Kazoe, S. Kubori, K. Morikawa, K. Mawatari, T. Kitamori, Anal. Sci. 38, 281 (2022)

    Article  CAS  PubMed  Google Scholar 

  19. L.-M. Omota, O. Iulian, O. Ciocîrlan, I. Niţă, Rev. Roum. Chim. 53, 977 (2008)

    CAS  Google Scholar 

  20. N.A. Mortensen, A. Kristensen, Appl. Phys. Lett. 92, 063110 (2008)

    Article  Google Scholar 

  21. V.-N. Phan, C. Yang, N.-T. Nguyen, Microfluid Nanofluid 7, 519 (2009)

    Article  CAS  Google Scholar 

  22. U. Raviv, P. Laurat, J. Klein, Nature 413, 51 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. U. Raviv, S. Perkin, P. Laurat, J. Klein, Langmuir 20, 5322 (2004)

    Article  CAS  PubMed  Google Scholar 

  24. Y. Zhu, S. Granick, Phys. Rev. Lett. 87, 096104 (2001)

    Article  CAS  PubMed  Google Scholar 

  25. H. Sakuma, K. Otsuki, K. Kurihara, Phys. Rev. Lett. 96, 046104 (2006)

    Article  PubMed  Google Scholar 

  26. M. Kasuya, M. Hino, H. Yamada, M. Mizukami, H. Mori, S. Kajita, T. Ohmori, A. Suzuki, K. Kurihara, J. Phys. Chem. C 117, 13540 (2013)

    Article  CAS  Google Scholar 

  27. D. Feng, X. Li, X. Wang, J. Li, X. Zhang, Int. J. Heat Mass Transfer 118, 900 (2018)

    Article  CAS  Google Scholar 

  28. J. Haneveld, N.R. Tas, N. Brunets, H.V. Jansen, M. Elwenspoek, Appl. Phys. Lett. 104, 014309 (2008)

    Google Scholar 

  29. L. Li, Y. Kazoe, K. Mawatari, Y. Sugii, T. Kitamori, J. Phys. Chem. Lett. 3, 2447 (2012)

    Article  CAS  PubMed  Google Scholar 

  30. V.D. Sobolev, N.V. Churaev, M.G. Velarde, Z.M. Zorin, J. Colloid Interface Sci. 222, 51 (2000)

    Article  CAS  PubMed  Google Scholar 

  31. K. Ikeda, Y. Kazoe, T. Tsukahara, K. Mawatari, T. Kitamori, Proc MicroTAS 2014, 61 (2014)

    Google Scholar 

  32. H. Eyring, J. Chem. Phys. 4, 283 (1936)

    Article  CAS  Google Scholar 

  33. Y. Kazoe, K. Shibata, T. Kitamori, Anal. Chem. 93, 13260 (2021)

    Article  CAS  PubMed  Google Scholar 

  34. Y. Andoh, K. Kurahashi, H. Sakuma, K. Yasuoka, K. Kurihara, Chem. Phys. Lett. 448, 253 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Kakenhi Grant-in-Aid (No. JP21000007) from the Japan Society for the Promotion of Science (JSPS) and TEPCO Memorial Foundation. Fabrication facilities were provided in part by the Academic Consortium for Nano and Micro Fabrication from four universities (The University of Tokyo, Tokyo Institute of Technology, Keio University and Waseda University, Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Kazoe.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazoe, Y., Ikeda, K., Mino, K. et al. Quantitative characterization of liquids flowing in geometrically controlled sub-100 nm nanofluidic channels. ANAL. SCI. 39, 779–784 (2023). https://doi.org/10.1007/s44211-023-00311-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00311-x

Keywords

Navigation