Skip to main content
Log in

Gelatin-based cell culture device for construction and X-ray irradiation of a three-dimensional oral cancer model

  • Rapid Communication
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Bioassays using three-dimensional (3D) tissue models offer several advantages over 2D culture assays because they can reproduce the structure and function of native tissues. In this study, we used our newly designed gelatin device to generate a miniature 3D model of human oral squamous cell carcinoma with stroma and blood vessels. To enable air–liquid interface culture, we conceived a new device structure in which three wells were lined up and separated by a dividing thread; the wells could be connected by removing the dividing thread. Cells were seeded in the center well with the dividing thread to form a multilayer, followed by the supply of media from the side wells after thread removal. Human oral squamous cell carcinoma (HSC-4) cells, human umbilical vein endothelial cells (HUVECs), and normal human dermal fibroblasts (NHDFs) were successfully cocultured, resulting in structures that mimicked 3D-cancer tissues. This 3D-cancer model was subjected to an X-ray sensitivity assay, followed by the evaluation of DNA damage using confocal microscopy and section-scanning electron microscopy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

All data generated or analysed during this study are included in this article.

References

  1. C. Jubelin, J. Muñoz-Garcia, L. Griscom, D. Cochonneau, E. Ollivier, M.F. Heymann, F.M. Vallette, L. Oliver, D. Heymann, Cell Biosci. 12, 155 (2022). https://doi.org/10.1186/s13578-022-00887-3

    Article  PubMed  PubMed Central  Google Scholar 

  2. F. Fontana, M. Marzagalli, M. Sommariva, N. Gagliano, P. Limonta, Cancers (Basel) (2021). https://doi.org/10.3390/cancers13122970

    Article  PubMed  PubMed Central  Google Scholar 

  3. Y. Imamura, T. Mukohara, Y. Shimono, Y. Funakoshi, N. Chayahara, M. Toyoda, N. Kiyota, S. Takao, S. Kono, T. Nakatsura, H. Minami, Oncol. Rep. 33, 2015 (1837). https://doi.org/10.3892/or.2015.3767

    Article  CAS  Google Scholar 

  4. C. Jensen, Y. Teng, Front. Mol. Biosci. 7, 33 (2020). https://doi.org/10.3389/fmolb.2020.00033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. V. Brancato, J.M. Oliveira, V.M. Correlo, R.L. Reis, S.C. Kundu, Biomaterials 232, 119744 (2020). https://doi.org/10.1016/j.biomaterials.2019.119744

    Article  CAS  PubMed  Google Scholar 

  6. T. Almela, L. Tayebi, K. Moharamzadeh, Bioprinting (Amsterdam, Netherlands) (2021). https://doi.org/10.1016/j.bprint.2021.e00132

    Article  PubMed  PubMed Central  Google Scholar 

  7. K. Haga, M. Yamazaki, S. Maruyama, M. Kawaharada, A. Suzuki, E. Hoshikawa, N.N. Chan, A. Funayama, T. Mikami, T. Kobayashi, K. Izumi, J.-I. Tanuma, Transl. Oncol. 14, 101236 (2021). https://doi.org/10.1016/j.tranon.2021.101236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. Ikeda, S. Sekine, T. Bessho, H. Otsuki, S. Sibata, M. Nakano, K. Sato, Bunseki Kagaku 71, 289 (2022)

    Article  CAS  Google Scholar 

  9. S. Sasaki, T. Suzuki, K. Morikawa, M. Matsusaki, K. Sato, Micromachines 14, 107 (2023). https://doi.org/10.3390/mi14010107

    Article  Google Scholar 

  10. A. Paguirigan, D.J. Beebe, Lab Chip 6, 407 (2006). https://doi.org/10.1039/b517524k

    Article  CAS  PubMed  Google Scholar 

  11. A.L. Paguirigan, D.J. Beebe, Nat. Protoc. 2, 1782 (2007). https://doi.org/10.1038/nprot.2007.256

    Article  CAS  PubMed  Google Scholar 

  12. T. Takagi, M. Osumi, A. Shinohara, Communications Biology 4, 1009 (2021). https://doi.org/10.1038/s42003-021-02545-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. K. Akita, T. Takagi, K. Kobayashi, K. Kuchitsu, T. Kuroiwa, N. Nagata, Protoplasma 258, 129–138 (2021). https://doi.org/10.1007/s00709-020-01557-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Grant-in-Aid for Scientific Research (JSPS, KAKENHI; Grant No. 21H01970, 21K18988). This work was conducted at Central Research Laboratory, Okayama University Medical School, Japan.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: KS. Performed the experiments: TB, TT, KI. Wrote the paper: TB, TT, KS.

Corresponding author

Correspondence to Kae Sato.

Ethics declarations

Conflict of interest

The authors declare no competing of interest. The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessho, T., Takagi, T., Igawa, K. et al. Gelatin-based cell culture device for construction and X-ray irradiation of a three-dimensional oral cancer model. ANAL. SCI. 39, 771–778 (2023). https://doi.org/10.1007/s44211-023-00308-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00308-6

Keywords

Navigation