Skip to main content
Log in

Construction of MOF@COF composite-based electrochemical aptasensor for detection of Staphylococcus aureus

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In this work, a biological metal–organic framework@conductive covalent organic framework composite (bio-MOF@con-COF, denoted as Zn-Glu@PTBD-COF, here, Glu indicates L-glutamic acid, PT indicates 1,10-phenanthroline-2,9-dicarbaldehyde, and BD indicates benzene-1,4-diamine) was prepared and used as sensing material to fabricate aptasensor for trace detection of Staphylococcus aureus (SA). The Zn-Glu@PTBD-COF integrates the mesoporous structure and abundant defects of the MOF framework, the excellent conductivity of the COF framework, and high stability of the composite, providing abundant active sites to effectively anchor aptamers. As a result, the Zn-Glu@PTBD-COF-based aptasensor shows high sensitivity to detect SA via specific recognition between aptamer and SA, as well as the formation of aptamer–SA complex. Low detection limits of 2.0 and 1.0 CFU·mL−1 are deduced from the electrochemical impedance spectroscopy and differential pulse voltammetry within a wide linear range of 10–108 CFU·mL−1 for SA, respectively. The Zn-Glu@PTBD-COF-based aptasensor also shows good selectivity, reproducibility, stability, regenerability, and applicability for real milk and honey samples. Therefore, the Zn-Glu@PTBD-COF-based aptasensor will be promising for fast screening of foodborne bacteria in food service industry.

Graphical abstract

Zn-Glu@PTBD-COF composite was prepared and used as sensing material to fabricate aptasensor for trace detection of Staphylococcus aureus (SA). Low detection limits of 2.0 and 1.0 CFU·mL−1 are deduced from the electrochemical impedance spectroscopy and differential pulse voltammetry within a wide linear range of 10–108 CFU·mL−1 for SA, respectively. The Zn-Glu@PTBD-COF-based aptasensor also shows good selectivity, reproducibility, stability, regenerability, and applicability for real milk and honey samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The authors declare that all the experimental data are available.

References

  1. Y. Wang, T.V. Duncan, Nanoscale sensors for assuring the safety of food products. Curr. Opin. Biotech. 44, 74–86 (2017)

    Article  CAS  PubMed  Google Scholar 

  2. Z. Zhang, F. Duan, L. He, D. Peng, F. Yan, M. Wang, W. Zong, C. Jia, Electrochemical clenbuterol immunosensor based on a gold electrode modified with zinc sulfide quantum dots and polyaniline. Microchim. Acta 183, 1089–1097 (2016)

    Article  CAS  Google Scholar 

  3. T. Leal, L. Abrunhosa, L. Domingues, A. Venâncio, C. Oliveira, BSA-based sample clean-up columns for ochratoxin a determination in wine: Method development and validation. Food Chem. 300, 125204 (2019)

    Article  CAS  PubMed  Google Scholar 

  4. A.A. Chavan, H. Li, A. Scarpellini, S. Marras, L. Manna, A. Athanassiou, D. Fragouli, Elastomeric nanocomposite foams for the removal of heavy metal ions from water. ACS Appl. Mater. Inter. 7, 14778–14784 (2015)

    Article  CAS  Google Scholar 

  5. J. Hu, Z. Shen, L. Tan, J. Yuan, N. Gan, Electrochemical aptasensor for simultaneous detection of foodborne pathogens based on a double stirring bars-assisted signal amplification strategy. Sensor. Actuat. B-Chem. 345, 130337 (2021)

    Article  CAS  Google Scholar 

  6. H. Chen, X. Wang, J. Li, X. Wang, Cotton derived carbonaceous aerogels for the efficient removal of organic pollutants and heavy metal ions. J. Mater. Chem. A 3, 6073–6081 (2015)

    Article  CAS  Google Scholar 

  7. M. Al Mamun, Y.A. Wahab, M.M. Hossain, A. Hashem, M.R. Johan, Electrochemical biosensors with aptamer recognition layer for the diagnosis of pathogenic bacteria: barriers to commercialization and remediation. TrAC-Trend. Anal. Chem. 145, 116458 (2021)

    Article  CAS  Google Scholar 

  8. V. Subjakova, V. Oravczova, M. Tatarko, T. Hianik, Advances in electrochemical aptasensors and immunosensors for detection of bacterial pathogens in food. Electrochim. Acta 389, 138724 (2021)

    Article  CAS  Google Scholar 

  9. K.L. Lin, T. Yang, H.Y. Zou, Y.F. Li, C.Z. Huang, Graphitic C3N4 nanosheet and hemin/G-quadruplex DNAzyme-based label-free chemiluminescence aptasensing for biomarkers. Talanta 192, 400–406 (2019)

    Article  CAS  PubMed  Google Scholar 

  10. J. Li, L. Liu, Y. Ai, Y. Liu, H. Sun, Q. Liang, Self-polymerized dopamine-decorated Au NPs and coordinated with Fe-MOF as a dual binding sites and dual signal-amplifying electrochemical aptasensor for the detection of CEA. ACS Appl. Mater. Inter. 12, 5500–5510 (2020)

    Article  CAS  Google Scholar 

  11. K. Xiang, D. Wu, X. Deng, M. Li, S. Chen, P. Hao, X. Guo, J. Luo, X. Fu, Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt Hydroxide@Hydroxysulfide nanosheets electrocatalysts. Adv. Funct. Mater. 30, 1909610 (2020)

    Article  CAS  Google Scholar 

  12. F. Duan, C. Guo, M. Hu, Y. Song, M. Wang, L. He, Z. Zhang, R. Pettinari, L. Zhou, Construction of the 0D/2D heterojunction of Ti3C2Tx MXene nanosheets and iron phthalocyanine quantum dots for the impedimetric aptasensing of microRNA-155. Sensor. Actuat. B-Chem. 310, 127844 (2020)

    Article  CAS  Google Scholar 

  13. T. Xu, H. Dai, Y. Jin, Electrochemical sensing of lead (II) by differential pulse voltammetry using conductive polypyrrole nanoparticles. Microchim. Acta 187, 1–7 (2020)

    Article  Google Scholar 

  14. J. Jiang, F. Li, S. Bai, Y. Wang, K. Xiang, H. Wang, J. Zou, J. Hsu, Carbonitride MXene Ti3CN(OH)x@MoS2 hybrids as efficient electrocatalyst for enhanced hydrogen evolution. Nano Res. 15, 1–8 (2022)

    CAS  Google Scholar 

  15. C. Gu, C. Guo, Z. Li, M. Wang, N. Zhou, L. He, Z. Zhang, M. Du, Bimetallic ZrHf-based metal-organic framework embedded with carbon dots: Ultra-sensitive platform for early diagnosis of HER2 and HER2-overexpressed living cancer cells. Biosens. Bioelectron. 134, 8–15 (2019)

    Article  CAS  PubMed  Google Scholar 

  16. J. Li, J. Zhao, S. Li, Y. Chen, W. Lv, J. Zhang, L. Zhang, Z. Zhang, X. Lu, Synergistic effect enhances the peroxidase-like activity in platinum nanoparticle-supported metal–organic framework hybrid nanozymes for ultrasensitive detection of glucose. Nano Res. 14, 4689–4695 (2021)

    Article  CAS  Google Scholar 

  17. X. Ma, C. Pang, S. Li, Y. Xiong, J. Li, J. Luo, Y. Yang, Synthesis of Zr-coordinated amide porphyrin-based two-dimensional covalent organic framework at liquid-liquid interface for electrochemical sensing of tetracycline. Biosens. Bioelectron. 146, 111734 (2019)

    Article  CAS  PubMed  Google Scholar 

  18. Y. Deng, Y. Wang, Z. Di, M. Xie, F. Dai, S. Zhan, Z. Zhang, Confining Metal-Organic framework in the pore of covalent organic framework: a microscale Z-Scheme system for boosting photocatalytic performance. Small Methods 6, 2200265 (2022)

    Article  CAS  Google Scholar 

  19. Y. Deng, Y. Wang, X. Xiao, B.J. Saucedo, Z. Zhu, M. Xie, X. Xu, K. Yao, Y. Zhai, Z. Zhang, J. Chen, Progress in hybridization of covalent organic frameworks and metal–organic frameworks. Small 18, 2202928 (2022)

    Article  CAS  Google Scholar 

  20. R. Liu, K.T. Tan, Y. Gong, Y. Chen, Z. Li, S. Xie, T. He, Z. Lu, H. Yang, D. Jiang, Covalent organic frameworks: An ideal platform for designing ordered materials and advanced applications. Chem. Soc. Rev. 50, 120–242 (2021)

    Article  CAS  PubMed  Google Scholar 

  21. Y. Xue, S. Zheng, H. Xue, H. Pang, Metal–organic framework composites and their electrochemical applications. J. Mater. Chem. A 7, 7301–7327 (2019)

    Article  CAS  Google Scholar 

  22. X. Zhang, G. Xie, D. Gou, P. Luo, Y. Yao, H. Chen, A novel enzyme-free electrochemical biosensor for rapid detection of Pseudomonas aeruginosa based on high catalytic Cu-ZrMOF and conductive Super P. Biosens. Bioelectron. 142, 111486 (2019)

    Article  CAS  PubMed  Google Scholar 

  23. W. Wang, L. Tan, J. Wu, T. Li, H. Xie, D. Wu, N. Gan, A universal signal-on electrochemical assay for rapid on-site quantitation of vibrio parahaemolyticus using aptamer modified magnetic metal–organic framework and phenylboronic acid-ferrocene co-immobilized nanolabel. Anal. Chim. Acta 1133, 128–136 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. J. Hu, D. Wu, T. Li, Y. Cao, X. Wang, N. Gan, Ratiometric electrochemical aptasensor for point-of-care testing Vibrio parahaemolyticus together with antimicrobial peptide-labeled nano metal-organic framework signal tag. Sensor. Actuat. B-Chem. 352, 130987 (2022)

    Article  CAS  Google Scholar 

  25. N. Li, J. Liu, J.J. Liu, L.Z. Dong, Z.F. Xin, Y.L. Teng, Y.Q. Lan, Adenine components in biomimetic metal–organic frameworks for efficient CO2 photoconversion. Angew. Chem. Int. Edit. 58, 5226–5231 (2019)

    Article  CAS  Google Scholar 

  26. S. Hajra, M. Sahu, A.M. Padhan, I.S. Lee, D.K. Yi, P. Alagarsamy, S.S. Nanda, H.J. Kim, A green metal–organic framework-cyclodextrin mof: a novel multifunctional material based triboelectric nanogenerator for highly efficient mechanical energy harvesting. Adv. Funct. Mater. 31, 2101829 (2021)

    Article  CAS  Google Scholar 

  27. S. Wang, M. Wahiduzzaman, L. Davis, A. Tissot, W. Shepard, J. Marrot, C. Martineau-Corcos, D. Hamdane, G. Maurin, S. Devautour-Vinot, A robust zirconium amino acid metal-organic framework for proton conduction. Nat. Commun. 9, 1–8 (2018)

    Article  Google Scholar 

  28. R. Nivetha, K. Gothandapani, V. Raghavan, Q. Van Le, S. Pitchaimuthu, M. Muthuramamoorty, S. Pandiaraj, A. Alodhayb, S. Kwan Jeong, A. Nirmala Grace, Nano‐MOF‐5 (Zn) Derived porous carbon as support electrocatalyst for hydrogen evolution reaction. ChemCatChem 13, 4342–4349 (2021)

    Article  CAS  Google Scholar 

  29. A. Kołodziejczak-Radzimska, T. Jesionowski, Zinc oxide—from synthesis to application: a review. Materials 7, 2833–2881 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  30. R. Huang, L. Wang, L. Guo, Highly sensitive electrochemiluminescence displacement method for the study of DNA/small molecule binding interactions. Anal. Chim. Acta 676, 41–45 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Henan Provincial Science and Technology Research Project (222102310493).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingpan Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 432 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Ma, Z., Huang, Y. et al. Construction of MOF@COF composite-based electrochemical aptasensor for detection of Staphylococcus aureus. ANAL. SCI. 39, 901–909 (2023). https://doi.org/10.1007/s44211-023-00295-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00295-8

Keywords

Navigation