Abstract
Molecular level understanding of the chemistry at the aqueous/hydrophobe interface is crucial to separation processes in aqueous media, such as reversed-phase liquid chromatography (RPLC) and solid-phase extraction (SPE). Despite significant advances in our knowledge of the solute retention mechanism in these reversed-phase systems, direct observation of the behavior of molecules and ions at the interface in reversed-phase systems still remains a major challenge and experimental probing techniques that provide the spatial information of the distribution of molecules and ions are required. This review addresses surface-bubble-modulated liquid chromatography (SBMLC), which has a stationary gas phase in a column packed with hydrophobic porous materials and enables one to observe the molecular distribution in the heterogeneous reversed-phase systems consisting of the bulk liquid phase, the interfacial liquid layer, and the hydrophobic materials. The distribution coefficients of organic compounds referring to their accumulations onto the interface of alkyl- and phenyl-hexyl-bonded silica particles exposed to water or acetonitrile–water and into the bonded layers from the bulk liquid phase are determined by SBMLC. The experimental data obtained by SBMLC show that the water/hydrophobe interface exhibits an accumulation selectivity for organic compounds, which is quite different from that of the interior of the bonded chain layer, and the overall separation selectivity of the reversed-phase systems is determined by the relative sizes of the aqueous/hydrophobe interface and the hydrophobe. The solvent composition and the thickness of the interfacial liquid layer formed on octadecyl-bonded (C18) silica surfaces are also estimated from the bulk liquid phase volume determined by the ion partition method employing small inorganic ions as probes. It is clarified that various hydrophilic organic compounds as well as inorganic ions recognize the interfacial liquid layer formed on the C18-bonded silica surfaces as being different from the bulk liquid phase. The behavior of some solute compounds exhibiting substantially weak retention in RPLC or the so-called negative adsorption, such as urea, sugars, and inorganic ions, can rationally be interpreted with a partition between the bulk liquid phase and the interfacial liquid layer. The spatial distribution of solute molecules and the structural properties of the solvent layer on the C18-bonded layer determined by the liquid chromatographic methods are discussed in comparison to the results obtained by other research groups using molecular simulation methods.
Graphical abstract
Similar content being viewed by others
Data availability
Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.
Abbreviations
- Superscript S:
-
SBMLC
- Superscript R:
-
RPLC
- \(D_{{{\text{IL}}}}\) :
-
Bulk liquid-to-interface distribution coefficient
- \(D_{{\text{C}}}\) :
-
Integrated adsorption equilibrium constant of a solute compound onto the bonded chains and the end-capped silica surface
- \(D_{{\text{C}}}^{{{\text{cor}}}}\) :
-
Adsorption equilibrium constant of a solute compound onto the bonded chains
- \(D_{{\text{E}}}\) :
-
Adsorption equilibrium constant of a solute compound onto the end-capped silica surface
- \(D_{{\text{G}}}\) :
-
Bulk liquid-to-gas phase distribution coefficient
- \(V_{{\text{R}}}\) :
-
Retention volume of a solute compound
- \(V_{0}\) :
-
Column void volume
- \(V_{{\text{L}}}\) :
-
Total liquid volume
- \(V_{{{\text{BL}}}}\) :
-
Bulk liquid phase volume
- \(V_{{{\text{IL}}}}\) :
-
Interfacial liquid layer volume
- V pore :
-
Pore volume
- \(V_{{\text{G}}}\) :
-
Gas phase volume
- \(V_{{\text{C}}}\) :
-
Volume of the bonded layer
- V int :
-
Interstitial volume
- \(S_{{\text{T}}}\) :
-
Total van der Waals surface area of the bonded chains
- \(S_{{\text{W}}}\) :
-
Total surface area of the wetted chains
- \(S_{{\text{C}}}\) :
-
Total van der Waals surface area of the unwetted bonded chains
- \(\phi_{i}^{{{\text{BL}}}}\) :
-
Volume fraction of the organic modifier i in the bulk liquid phase
- \(\phi_{i}^{{{\text{IL}}}}\) :
-
Volume fraction of the organic modifier i in the interfacial liquid layer
- L :
-
Thickness of the interfacial liquid layer
References
P. Žuvela, M. Skoczylas, J. Jay Liu, T. Bączek, R. Kaliszan, M.W. Wong, B. Buszewski, Chem. Rev. 119, 3674 (2019)
F. Gritti, G. Guiochon, J. Chromatogr. A 1099, 1 (2005)
T.L. Chester, Anal. Chem. 85, 579 (2013)
D.E. Raynie, Anal. Chem. 82, 4911 (2010)
C. Horváth, W. Melander, I. Molnár, J. Chromatogr. 125, 129 (1976)
W. Melander, J. Stoveken, C. Horváth, J. Chromatogr. 199, 35 (1980)
K.A. Dill, J. Phys. Chem. 91, 1980 (1987)
J.G. Dorsey, K.A. Dill, Chem. Rev. 89, 331 (1989)
L.A. Cole, J.G. Dorsey, Anal. Chem. 64, 1317 (1992)
L.A. Cole, J.D. Dorsey, K.A. Dill, Anal. Chem. 64, 1324 (1992)
S. Tsukahara, K. Saitoh, N. Suzuki, Anal. Sci. 9, 71 (1993)
Y.V. Kazakevich, R. LoBrutto, F. Chan, T. Patel, J. Chromatogr. A 913, 75 (2001)
F. Gritti, G. Guiochon, Anal. Chem. 77, 4257 (2005)
N. Marchetti, L. Caciolli, A. Laganà, F. Gasparrini, L. Pasti, F. Dondi, A. Cavazzini, Anal. Chem. 84, 7138 (2012)
A. Cavazzini, N. Marchetti, R. Guzzinati, R. Pasti, A. Ciogli, F. Gasparrini, A. Laganá, Anal. Chem. 86, 4919 (2014)
M. Catani, R. Guzzinati, N. Marchetti, L. Pasti, A. Cavazzini, Anal. Chem. 87, 6854 (2015)
C.F. Poole, Chromatographia 82, 49 (2019)
S.J. Klatte, T.L. Beck, J. Phys. Chem. 100, 5931 (1996)
J.L. Rafferty, L. Zhang, J.I. Siepmann, M.R. Schure, Anal. Chem. 79, 6551 (2007)
J.L. Rafferty, J.I. Siepmann, M.R. Schure, J. Chromatogr. A 1218, 2203 (2011)
R.K. Lindsey, J.L. Rafferty, B.L. Eggimann, J.I. Siepmann, M.R. Schure, J. Chromatogr. A 1287, 60 (2013)
J. Braun, A. Fouqueau, R.J. Bemish, M. Meuwly, Phys. Chem. Chem. Phys. 10, 4765 (2008)
E.R. Mansfield, D.S. Mansfield, J.E. Patterson, T.A. Knotts, J. Phys. Chem. C 116, 8456 (2012)
E.D. Dawson, S.L. Wallen, J. Am. Chem. Soc. 124, 14210 (2002)
K. El Hage, P.K. Gupta, R. Bemish, M. Meuwly, J. Phys. Chem. Lett. 8, 4600 (2017)
J. Rybka, A. Holtzel, U. Tallarek, J. Phys. Chem. C 121, 17907 (2017)
M. Wang, J. Mallette, J.F. Parcher, J. Chromatogr. A 1190, 1 (2008)
F. Gritti, Y.V. Kazakevich, G. Guiochon, J. Chromatogr. A 1161, 157 (2007)
C.A. Rimmer, C.R. Simmons, J.G. Dorsey, J. Chromatogr. A 965, 219 (2002)
D.E. Martire, R.E. Boehm, J. Phys. Chem. A 87, 1045 (1983)
S. Buntz, M. Figus, Z. Liu, Y.V. Kazakevich, J. Chromatogr. A 1240, 104 (2012)
T. Takano, C. Aoyama, Y. Terasaki, K. Suzuki, A. Ando, Y. Song, M. Tsunoda, Anal. Sci. 37, 1811 (2021)
N. Felitsyn, F.F. Cantwell, Anal. Chem. 71, 1862 (1999)
J. Ohashi, M. Harada, T. Okada, Chromatographia 81, 1127 (2018)
L. Kisley, C.F. Landes, Anal. Chem. 87, 83 (2015)
C.F. Poole, N. Lenca, J. Chromatogr. A 1486, 2 (2017)
R.C. Zeigler, G.E. Maciel, J. Am. Chem. Soc. 113, 6349 (1991)
M. Pursch, L.C. Sander, K. Albert, Anal. Chem. 68, 4107 (1996)
S. Strohschein, M. Pursch, D. Lubda, K. Albert, Anal. Chem. 70, 13 (1998)
L.C. Sander, J.B. Callis, L.R. Field, Anal. Chem. 55, 1068 (1983)
S. Singh, J. Wegmann, K. Albert, K. Muller, J. Phys. Chem. B 106, 878 (2002)
C.A. Doyle, T.J. Vickers, C.K. Mann, J.G. Dorsey, J. Chromatogr. A 877, 41 (2000)
Z. Liao, J.E. Pemberton, Anal. Chem. 80, 2911 (2008)
J.L. Gasser-Ramirez, J.M. Harris, Anal. Chem. 81, 2869 (2009)
B. Malfait, A. Moréac, A. Jani, R. Lefort, P. Huber, M. Fröba, D. Morineau, J. Phys. Chem. C 126, 3520 (2022)
M.E. Montgomery, M.A. Green, M.J. Wirth, Anal. Chem. 64, 1170 (1992)
M.C. Henry, E.A. Piagessi, J.C. Zesotarski, M.C. Messmer, Langmuir 21, 6521 (2005)
M.J. Wirth, D.J. Swinton, Anal. Chem. 70, 5264 (1998)
M.D. Ludes, M.J. Wirth, Anal. Chem. 74, 386 (2001)
T.J. Bandosz, J. Colloid Interface Sci. 193, 127 (1997)
M. Pyda, B.J. Stanley, M. Xie, G. Guiochon, Langmuir 10, 1573 (1994)
J. Nawrocki, J. Chromatogr. A 779, 29 (1997)
M.J. Wirth, R.P. Fairbank, H.O. Fatunmbi, Science 275, 44 (1997)
J. Rybka, A. Höltzel, S.M. Melnikov, A. Seidel-Morgenstern, U. Tallarek, Fluid Phase Equilib. 407, 177 (2016)
J. Rybka, A. Höltzel, A. Steinhoff, U. Tallarek, J. Phys. Chem. C 123, 3672 (2019)
J. Rybka, A. Höltzel, N. Trebel, U. Tallarek, J. Phys. Chem. C 123, 21617 (2019)
K. Nakamura, S. Saito, M. Shibukawa, J. Phys. Chem. C 122, 4409 (2018)
F. Gritti, Anal. Chem. 93, 5653 (2021)
C.F. Poole, S.K. Poole, J. Chromatogr. A 1216, 1530 (2009)
K.S. Yun, C. Zhu, J.F. Parcher, Anal. Chem. 67, 613 (1995)
K. Nakamura, H. Nakamura, S. Saito, M. Shibukawa, Anal. Chem 87, 1180 (2015)
K. Nakamura, R. Ubukata, H. Mizuno, S. Saito, M. Shibukawa, J. Phys. Chem. C 122, 28674 (2018)
K. Nakamura, S. Saito, M. Shibukawa, J. Chromatogr. A 1628, 461450 (2020)
M. Shibukawa, H. Okutsu, S. Saito, ACS Omega 7, 15158 (2022)
B.J. Stanley, C.R. Foster, G. Guiochon, J. Chromatogr. A 761, 41 (1997)
M. Shibukawa, Y. Takazawa, K. Saitoh, Anal. Chem. 79, 6279 (2007)
M. Shibukawa, Y. Kondo, Y. Ogiyama, K. Osuga, S. Saito, Phys. Chem. Chem. Phys. 13, 15925 (2011)
Y.V. Kazakevich, H.M. MacNair, J. Chromatogr. A 872, 49 (2000)
L. Li, P.W. Carr, J.F. Evans, J. Chromatogr. A 868, 153 (2000)
A.M. Krstulovic, H. Colin, G. Guiochon, Anal. Chem. 54, 2438 (1982)
S. Pous-Torres, J.R. Torres-Lapasió, M.C. García-Álvarez-Coque, J. Liq. Chromatogr. Relat. Technol. 32, 1065 (2009)
M. Shibukawa, N. Ohta, Chromatographia 25, 288 (1988)
M. Shibukawa, N. Ohta, Chromatographia 22, 261 (1986)
M. Shibukawa, N. Ohta, K. Kuroda, Anal. Chem. 53, 1620 (1981)
P. Jungwirth, D.J. Tobias, J. Phys. Chem. B 105, 10468 (2001)
S. Gopalakrishnan, P. Jungwirth, D.J. Tobias, H.C. Allen, J. Phys. Chem. B 109, 8861 (2005)
E. Loeser, P. Drumm, Anal. Chem. 79, 5382 (2007)
E. Loeser, Z. Liu, M. DelaCruz, V. Madappalli, Global. J. Anal. Chem. 2, 50 (2011)
V. Davankov, M. Tsyurupa, J. Chromatogr. A 1087, 3 (2005)
V. Davankov, M. Tsyurupa, N.N. Alexienko, J. Chromatogr. A 1100, 32 (2005)
M. Laatikainen, T. Sainio, V. Davankov, M. Tsyurupa, Z. Blinnikova, E. Paatero, J. Chromatogr. A 1149, 245 (2007)
F. Akter, Y. Ogiyama, S. Saito, M. Shibukawa, J. Sep. Sci. 40, 3205 (2017)
F. Akter, S. Saito, Y. Tasaki-Handa, M. Shibukawa, Anal. Sci. 34, 369 (2018)
O. Shirota, Y. Ohtsu, O. Nakata, J. Chromatogr. Sci. 28, 553 (1990)
S. Kobayashi, I. Tanaka, O. Shirota, T. Kanda, Y. Ohtsu, J. Chromatogr. A 828, 75 (1998)
B.J. VanMiddlesworth, J.G. Dorsey, J. Chromatogr. A 1218, 7158 (2011)
T.H. Walter, P. Iraneta, M. Capparella, J. Chromatogr. A 1075, 177 (2005)
N. Nagae, Bunseki Kagaku 59, 193 (2010)
A. Cavazzini, N. Marchetti, L. Pasti, R. Greco, F. Dondi, A. Laganà, A. Ciogli, F. Gasparrini, Anal. Chem. 85, 19 (2013)
F. Gritti, T.H. Walter, LCGC N. Am. 39, 33 (2021)
A. Checco, T. Hofmann, E. DiMasi, C.T. Black, B.M. Ocko, Nano Lett. 10, 1354 (2010)
E.W. Washburn, Phys. Rev. 17, 273 (1921)
J.J. Kirkland, J. Chromatogr. A 1060, 9 (2004)
D.M. Bliesner, K.B. Sentell, Anal. Chem. 65, 1819 (1993)
J. Hine, P.K. Mookerjee, J. Org. Chem. 40, 292 (1975)
J.A.V. Butler, C.N. Ramchandani, D.W. Thomson, J. Chem. Soc. (1935). https://doi.org/10.1039/jr9350000280
J.R. Snider, G.A. Dawson, J. Geophys. Res. 90, 3797 (1985)
M.H. Abraham, J. Pharm. Sci. 83, 1085 (1994)
S. Bonican, B. Buszewski, J. Sep. Sci. 35, 1191 (2012)
A. Ciogli, P. Simone, C. Villani, F. Gasparrini, A. Laganà, D. Capitani, N. Marchetti, L. Pasti, A. Massi, A. Cavazzini, Chem. Eur. J. 20, 8138 (2014)
S. Ohmuro, R. Ishizaki, M. Tsukamoto, S. Nasu, T. Yasui, K. Takada, A. Yuchi, Anal. Sci. 37, 879 (2021)
J. Zhao, P.W. Carr, Anal. Chem. 70, 3619 (1998)
M. Turowski, N. Yamakawa, J. Meller, K. Kimata, T. Ikegami, K. Hosoya, N. Tanaka, E. Thornton, J. Am. Chem. Soc. 125, 13836 (2003)
K. Croes, A. Steffens, D.H. Marchand, L.R. Snyder, J. Chromatogr. A 1098, 123 (2005)
M.R. Euerby, P. Petersson, W. Campbell, W. Roe, J. Chromatogr. A 1154, 138 (2007)
J. Israelachivili, Intermolecular and Surface Forces, 3rd edn. (Academic Press, London, 2011)
M. Kunieda, K. Nakaoka, Y. Liang, C.R. Miranda, A. Ueda, S. Takahashi, H. Okabe, T. Matsuoka, J. Am. Chem. Soc. 132, 18281 (2010)
A.A. Freitas, F.H. Quina, F.A. Carroll, J. Phys. Chem. B 101, 7488 (1997)
A.H. Demond, A.S. Lindner, Environ. Sci. Technol. 27, 2318 (1993)
A.M. Zissimos, M.H. Abraham, M.C. Barker, K.J. Box, K.Y. Tam, J. Chem. Soc. Perkin. Trans. 2, 470 (2002)
A. Riddick, W.B. Bunger, Organic Solvents-Physical Properties & Methods of Purification, 2, 3rd edn. (Wiley-Interscience, New York, 1970)
R.L. David, CRC Handbook of Chemistry and Physics, 84th edn. (CRC Press, Boca Raton, FL, 2004)
J.H. Knox, R. Kaliszan, J. Chromatogr. 349, 211 (1985)
G.C. Benson, O. Kiyohara, J. Solution Chem. 9, 791 (1980)
N. van Meurs, G. Somsen, J. Solution Chem. 22, 427 (1993)
M.F. Ottaviani, I. Leonardis, A. Cappiello, M. Cangiotti, R. Mazzeo, H. Trufelli, P. Palma, J. Colloid Interface Sci. 352, 512 (2010)
Y. Marcus, J. Phys. Org. Chem. 25, 1072 (2012)
F. Gritti, J. Chromatogr. A 1410, 90 (2015)
T. Yamaguchi, N. Fukuyama, K. Yoshida, Y. Katayama, Anal. Sci. 38, 409 (2022)
K.J. Tielrooij, N. Garcia-Araez, M. Bonn, H.J. Bakker, Science 328, 1006 (2010)
Acknowledgements
This research was supported by a Grant-in-Aid for Scientific Research No. 25288062 and 19H02741 from Ministry of Education, Culture, Sports, Science and Technology, Japan.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Shibukawa, M. Surface-bubble-modulated liquid chromatography: an experimental strategy for identification of molecular processes of solute retention in reversed-phase separation systems. ANAL. SCI. 39, 791–813 (2023). https://doi.org/10.1007/s44211-023-00291-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s44211-023-00291-y