Skip to main content
Log in

Surface-bubble-modulated liquid chromatography: an experimental strategy for identification of molecular processes of solute retention in reversed-phase separation systems

  • Review
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Molecular level understanding of the chemistry at the aqueous/hydrophobe interface is crucial to separation processes in aqueous media, such as reversed-phase liquid chromatography (RPLC) and solid-phase extraction (SPE). Despite significant advances in our knowledge of the solute retention mechanism in these reversed-phase systems, direct observation of the behavior of molecules and ions at the interface in reversed-phase systems still remains a major challenge and experimental probing techniques that provide the spatial information of the distribution of molecules and ions are required. This review addresses surface-bubble-modulated liquid chromatography (SBMLC), which has a stationary gas phase in a column packed with hydrophobic porous materials and enables one to observe the molecular distribution in the heterogeneous reversed-phase systems consisting of the bulk liquid phase, the interfacial liquid layer, and the hydrophobic materials. The distribution coefficients of organic compounds referring to their accumulations onto the interface of alkyl- and phenyl-hexyl-bonded silica particles exposed to water or acetonitrile–water and into the bonded layers from the bulk liquid phase are determined by SBMLC. The experimental data obtained by SBMLC show that the water/hydrophobe interface exhibits an accumulation selectivity for organic compounds, which is quite different from that of the interior of the bonded chain layer, and the overall separation selectivity of the reversed-phase systems is determined by the relative sizes of the aqueous/hydrophobe interface and the hydrophobe. The solvent composition and the thickness of the interfacial liquid layer formed on octadecyl-bonded (C18) silica surfaces are also estimated from the bulk liquid phase volume determined by the ion partition method employing small inorganic ions as probes. It is clarified that various hydrophilic organic compounds as well as inorganic ions recognize the interfacial liquid layer formed on the C18-bonded silica surfaces as being different from the bulk liquid phase. The behavior of some solute compounds exhibiting substantially weak retention in RPLC or the so-called negative adsorption, such as urea, sugars, and inorganic ions, can rationally be interpreted with a partition between the bulk liquid phase and the interfacial liquid layer. The spatial distribution of solute molecules and the structural properties of the solvent layer on the C18-bonded layer determined by the liquid chromatographic methods are discussed in comparison to the results obtained by other research groups using molecular simulation methods.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Abbreviations

Superscript S:

SBMLC

Superscript R:

RPLC

\(D_{{{\text{IL}}}}\) :

Bulk liquid-to-interface distribution coefficient

\(D_{{\text{C}}}\) :

Integrated adsorption equilibrium constant of a solute compound onto the bonded chains and the end-capped silica surface

\(D_{{\text{C}}}^{{{\text{cor}}}}\) :

Adsorption equilibrium constant of a solute compound onto the bonded chains

\(D_{{\text{E}}}\) :

Adsorption equilibrium constant of a solute compound onto the end-capped silica surface

\(D_{{\text{G}}}\) :

Bulk liquid-to-gas phase distribution coefficient

\(V_{{\text{R}}}\) :

Retention volume of a solute compound

\(V_{0}\) :

Column void volume

\(V_{{\text{L}}}\) :

Total liquid volume

\(V_{{{\text{BL}}}}\) :

Bulk liquid phase volume

\(V_{{{\text{IL}}}}\) :

Interfacial liquid layer volume

V pore :

Pore volume

\(V_{{\text{G}}}\) :

Gas phase volume

\(V_{{\text{C}}}\) :

Volume of the bonded layer

V int :

Interstitial volume

\(S_{{\text{T}}}\) :

Total van der Waals surface area of the bonded chains

\(S_{{\text{W}}}\) :

Total surface area of the wetted chains

\(S_{{\text{C}}}\) :

Total van der Waals surface area of the unwetted bonded chains

\(\phi_{i}^{{{\text{BL}}}}\) :

Volume fraction of the organic modifier i in the bulk liquid phase

\(\phi_{i}^{{{\text{IL}}}}\) :

Volume fraction of the organic modifier i in the interfacial liquid layer

L :

Thickness of the interfacial liquid layer

References

  1. P. Žuvela, M. Skoczylas, J. Jay Liu, T. Bączek, R. Kaliszan, M.W. Wong, B. Buszewski, Chem. Rev. 119, 3674 (2019)

    Article  PubMed  Google Scholar 

  2. F. Gritti, G. Guiochon, J. Chromatogr. A 1099, 1 (2005)

    Article  CAS  PubMed  Google Scholar 

  3. T.L. Chester, Anal. Chem. 85, 579 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. D.E. Raynie, Anal. Chem. 82, 4911 (2010)

    Article  CAS  PubMed  Google Scholar 

  5. C. Horváth, W. Melander, I. Molnár, J. Chromatogr. 125, 129 (1976)

    Article  Google Scholar 

  6. W. Melander, J. Stoveken, C. Horváth, J. Chromatogr. 199, 35 (1980)

    Article  CAS  Google Scholar 

  7. K.A. Dill, J. Phys. Chem. 91, 1980 (1987)

    Article  CAS  Google Scholar 

  8. J.G. Dorsey, K.A. Dill, Chem. Rev. 89, 331 (1989)

    Article  CAS  Google Scholar 

  9. L.A. Cole, J.G. Dorsey, Anal. Chem. 64, 1317 (1992)

    Article  CAS  PubMed  Google Scholar 

  10. L.A. Cole, J.D. Dorsey, K.A. Dill, Anal. Chem. 64, 1324 (1992)

    Article  CAS  PubMed  Google Scholar 

  11. S. Tsukahara, K. Saitoh, N. Suzuki, Anal. Sci. 9, 71 (1993)

    Article  CAS  Google Scholar 

  12. Y.V. Kazakevich, R. LoBrutto, F. Chan, T. Patel, J. Chromatogr. A 913, 75 (2001)

    Article  CAS  PubMed  Google Scholar 

  13. F. Gritti, G. Guiochon, Anal. Chem. 77, 4257 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. N. Marchetti, L. Caciolli, A. Laganà, F. Gasparrini, L. Pasti, F. Dondi, A. Cavazzini, Anal. Chem. 84, 7138 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. A. Cavazzini, N. Marchetti, R. Guzzinati, R. Pasti, A. Ciogli, F. Gasparrini, A. Laganá, Anal. Chem. 86, 4919 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. M. Catani, R. Guzzinati, N. Marchetti, L. Pasti, A. Cavazzini, Anal. Chem. 87, 6854 (2015)

    Article  CAS  PubMed  Google Scholar 

  17. C.F. Poole, Chromatographia 82, 49 (2019)

    Article  CAS  Google Scholar 

  18. S.J. Klatte, T.L. Beck, J. Phys. Chem. 100, 5931 (1996)

    Article  CAS  Google Scholar 

  19. J.L. Rafferty, L. Zhang, J.I. Siepmann, M.R. Schure, Anal. Chem. 79, 6551 (2007)

    Article  CAS  PubMed  Google Scholar 

  20. J.L. Rafferty, J.I. Siepmann, M.R. Schure, J. Chromatogr. A 1218, 2203 (2011)

    Article  CAS  PubMed  Google Scholar 

  21. R.K. Lindsey, J.L. Rafferty, B.L. Eggimann, J.I. Siepmann, M.R. Schure, J. Chromatogr. A 1287, 60 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. J. Braun, A. Fouqueau, R.J. Bemish, M. Meuwly, Phys. Chem. Chem. Phys. 10, 4765 (2008)

    Article  CAS  PubMed  Google Scholar 

  23. E.R. Mansfield, D.S. Mansfield, J.E. Patterson, T.A. Knotts, J. Phys. Chem. C 116, 8456 (2012)

    Article  CAS  Google Scholar 

  24. E.D. Dawson, S.L. Wallen, J. Am. Chem. Soc. 124, 14210 (2002)

    Article  CAS  PubMed  Google Scholar 

  25. K. El Hage, P.K. Gupta, R. Bemish, M. Meuwly, J. Phys. Chem. Lett. 8, 4600 (2017)

    Article  PubMed  Google Scholar 

  26. J. Rybka, A. Holtzel, U. Tallarek, J. Phys. Chem. C 121, 17907 (2017)

    Article  CAS  Google Scholar 

  27. M. Wang, J. Mallette, J.F. Parcher, J. Chromatogr. A 1190, 1 (2008)

    Article  CAS  PubMed  Google Scholar 

  28. F. Gritti, Y.V. Kazakevich, G. Guiochon, J. Chromatogr. A 1161, 157 (2007)

    Article  CAS  PubMed  Google Scholar 

  29. C.A. Rimmer, C.R. Simmons, J.G. Dorsey, J. Chromatogr. A 965, 219 (2002)

    Article  CAS  PubMed  Google Scholar 

  30. D.E. Martire, R.E. Boehm, J. Phys. Chem. A 87, 1045 (1983)

    CAS  Google Scholar 

  31. S. Buntz, M. Figus, Z. Liu, Y.V. Kazakevich, J. Chromatogr. A 1240, 104 (2012)

    Article  CAS  PubMed  Google Scholar 

  32. T. Takano, C. Aoyama, Y. Terasaki, K. Suzuki, A. Ando, Y. Song, M. Tsunoda, Anal. Sci. 37, 1811 (2021)

    Article  CAS  PubMed  Google Scholar 

  33. N. Felitsyn, F.F. Cantwell, Anal. Chem. 71, 1862 (1999)

    Article  CAS  PubMed  Google Scholar 

  34. J. Ohashi, M. Harada, T. Okada, Chromatographia 81, 1127 (2018)

    Article  CAS  Google Scholar 

  35. L. Kisley, C.F. Landes, Anal. Chem. 87, 83 (2015)

    Article  CAS  PubMed  Google Scholar 

  36. C.F. Poole, N. Lenca, J. Chromatogr. A 1486, 2 (2017)

    Article  CAS  PubMed  Google Scholar 

  37. R.C. Zeigler, G.E. Maciel, J. Am. Chem. Soc. 113, 6349 (1991)

    Article  CAS  Google Scholar 

  38. M. Pursch, L.C. Sander, K. Albert, Anal. Chem. 68, 4107 (1996)

    Article  CAS  PubMed  Google Scholar 

  39. S. Strohschein, M. Pursch, D. Lubda, K. Albert, Anal. Chem. 70, 13 (1998)

    Article  CAS  PubMed  Google Scholar 

  40. L.C. Sander, J.B. Callis, L.R. Field, Anal. Chem. 55, 1068 (1983)

    Article  CAS  Google Scholar 

  41. S. Singh, J. Wegmann, K. Albert, K. Muller, J. Phys. Chem. B 106, 878 (2002)

    Article  CAS  Google Scholar 

  42. C.A. Doyle, T.J. Vickers, C.K. Mann, J.G. Dorsey, J. Chromatogr. A 877, 41 (2000)

    Article  CAS  PubMed  Google Scholar 

  43. Z. Liao, J.E. Pemberton, Anal. Chem. 80, 2911 (2008)

    Article  CAS  PubMed  Google Scholar 

  44. J.L. Gasser-Ramirez, J.M. Harris, Anal. Chem. 81, 2869 (2009)

    Article  CAS  PubMed  Google Scholar 

  45. B. Malfait, A. Moréac, A. Jani, R. Lefort, P. Huber, M. Fröba, D. Morineau, J. Phys. Chem. C 126, 3520 (2022)

    Article  CAS  Google Scholar 

  46. M.E. Montgomery, M.A. Green, M.J. Wirth, Anal. Chem. 64, 1170 (1992)

    Article  CAS  Google Scholar 

  47. M.C. Henry, E.A. Piagessi, J.C. Zesotarski, M.C. Messmer, Langmuir 21, 6521 (2005)

    Article  CAS  PubMed  Google Scholar 

  48. M.J. Wirth, D.J. Swinton, Anal. Chem. 70, 5264 (1998)

    Article  CAS  Google Scholar 

  49. M.D. Ludes, M.J. Wirth, Anal. Chem. 74, 386 (2001)

    Article  Google Scholar 

  50. T.J. Bandosz, J. Colloid Interface Sci. 193, 127 (1997)

    Article  CAS  PubMed  Google Scholar 

  51. M. Pyda, B.J. Stanley, M. Xie, G. Guiochon, Langmuir 10, 1573 (1994)

    Article  CAS  Google Scholar 

  52. J. Nawrocki, J. Chromatogr. A 779, 29 (1997)

    Article  CAS  Google Scholar 

  53. M.J. Wirth, R.P. Fairbank, H.O. Fatunmbi, Science 275, 44 (1997)

    Article  CAS  PubMed  Google Scholar 

  54. J. Rybka, A. Höltzel, S.M. Melnikov, A. Seidel-Morgenstern, U. Tallarek, Fluid Phase Equilib. 407, 177 (2016)

    Article  CAS  Google Scholar 

  55. J. Rybka, A. Höltzel, A. Steinhoff, U. Tallarek, J. Phys. Chem. C 123, 3672 (2019)

    Article  CAS  Google Scholar 

  56. J. Rybka, A. Höltzel, N. Trebel, U. Tallarek, J. Phys. Chem. C 123, 21617 (2019)

    Article  CAS  Google Scholar 

  57. K. Nakamura, S. Saito, M. Shibukawa, J. Phys. Chem. C 122, 4409 (2018)

    Article  CAS  Google Scholar 

  58. F. Gritti, Anal. Chem. 93, 5653 (2021)

    Article  CAS  PubMed  Google Scholar 

  59. C.F. Poole, S.K. Poole, J. Chromatogr. A 1216, 1530 (2009)

    Article  CAS  PubMed  Google Scholar 

  60. K.S. Yun, C. Zhu, J.F. Parcher, Anal. Chem. 67, 613 (1995)

    Article  CAS  Google Scholar 

  61. K. Nakamura, H. Nakamura, S. Saito, M. Shibukawa, Anal. Chem 87, 1180 (2015)

    Article  CAS  PubMed  Google Scholar 

  62. K. Nakamura, R. Ubukata, H. Mizuno, S. Saito, M. Shibukawa, J. Phys. Chem. C 122, 28674 (2018)

    Article  CAS  Google Scholar 

  63. K. Nakamura, S. Saito, M. Shibukawa, J. Chromatogr. A 1628, 461450 (2020)

    Article  CAS  PubMed  Google Scholar 

  64. M. Shibukawa, H. Okutsu, S. Saito, ACS Omega 7, 15158 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. B.J. Stanley, C.R. Foster, G. Guiochon, J. Chromatogr. A 761, 41 (1997)

    Article  CAS  Google Scholar 

  66. M. Shibukawa, Y. Takazawa, K. Saitoh, Anal. Chem. 79, 6279 (2007)

    Article  CAS  PubMed  Google Scholar 

  67. M. Shibukawa, Y. Kondo, Y. Ogiyama, K. Osuga, S. Saito, Phys. Chem. Chem. Phys. 13, 15925 (2011)

    Article  CAS  PubMed  Google Scholar 

  68. Y.V. Kazakevich, H.M. MacNair, J. Chromatogr. A 872, 49 (2000)

    Article  CAS  PubMed  Google Scholar 

  69. L. Li, P.W. Carr, J.F. Evans, J. Chromatogr. A 868, 153 (2000)

    Article  CAS  PubMed  Google Scholar 

  70. A.M. Krstulovic, H. Colin, G. Guiochon, Anal. Chem. 54, 2438 (1982)

    Article  CAS  Google Scholar 

  71. S. Pous-Torres, J.R. Torres-Lapasió, M.C. García-Álvarez-Coque, J. Liq. Chromatogr. Relat. Technol. 32, 1065 (2009)

    Article  CAS  Google Scholar 

  72. M. Shibukawa, N. Ohta, Chromatographia 25, 288 (1988)

    Article  CAS  Google Scholar 

  73. M. Shibukawa, N. Ohta, Chromatographia 22, 261 (1986)

    Article  CAS  Google Scholar 

  74. M. Shibukawa, N. Ohta, K. Kuroda, Anal. Chem. 53, 1620 (1981)

    Article  CAS  Google Scholar 

  75. P. Jungwirth, D.J. Tobias, J. Phys. Chem. B 105, 10468 (2001)

    Article  CAS  Google Scholar 

  76. S. Gopalakrishnan, P. Jungwirth, D.J. Tobias, H.C. Allen, J. Phys. Chem. B 109, 8861 (2005)

    Article  CAS  PubMed  Google Scholar 

  77. E. Loeser, P. Drumm, Anal. Chem. 79, 5382 (2007)

    Article  CAS  PubMed  Google Scholar 

  78. E. Loeser, Z. Liu, M. DelaCruz, V. Madappalli, Global. J. Anal. Chem. 2, 50 (2011)

    CAS  Google Scholar 

  79. V. Davankov, M. Tsyurupa, J. Chromatogr. A 1087, 3 (2005)

    Article  CAS  PubMed  Google Scholar 

  80. V. Davankov, M. Tsyurupa, N.N. Alexienko, J. Chromatogr. A 1100, 32 (2005)

    Article  CAS  PubMed  Google Scholar 

  81. M. Laatikainen, T. Sainio, V. Davankov, M. Tsyurupa, Z. Blinnikova, E. Paatero, J. Chromatogr. A 1149, 245 (2007)

    Article  CAS  PubMed  Google Scholar 

  82. F. Akter, Y. Ogiyama, S. Saito, M. Shibukawa, J. Sep. Sci. 40, 3205 (2017)

    Article  CAS  PubMed  Google Scholar 

  83. F. Akter, S. Saito, Y. Tasaki-Handa, M. Shibukawa, Anal. Sci. 34, 369 (2018)

    Article  CAS  PubMed  Google Scholar 

  84. O. Shirota, Y. Ohtsu, O. Nakata, J. Chromatogr. Sci. 28, 553 (1990)

    Article  CAS  Google Scholar 

  85. S. Kobayashi, I. Tanaka, O. Shirota, T. Kanda, Y. Ohtsu, J. Chromatogr. A 828, 75 (1998)

    Article  CAS  Google Scholar 

  86. B.J. VanMiddlesworth, J.G. Dorsey, J. Chromatogr. A 1218, 7158 (2011)

    Article  CAS  PubMed  Google Scholar 

  87. T.H. Walter, P. Iraneta, M. Capparella, J. Chromatogr. A 1075, 177 (2005)

    Article  CAS  PubMed  Google Scholar 

  88. N. Nagae, Bunseki Kagaku 59, 193 (2010)

    Article  CAS  Google Scholar 

  89. A. Cavazzini, N. Marchetti, L. Pasti, R. Greco, F. Dondi, A. Laganà, A. Ciogli, F. Gasparrini, Anal. Chem. 85, 19 (2013)

    Article  CAS  PubMed  Google Scholar 

  90. F. Gritti, T.H. Walter, LCGC N. Am. 39, 33 (2021)

    Article  CAS  Google Scholar 

  91. A. Checco, T. Hofmann, E. DiMasi, C.T. Black, B.M. Ocko, Nano Lett. 10, 1354 (2010)

    Article  CAS  PubMed  Google Scholar 

  92. E.W. Washburn, Phys. Rev. 17, 273 (1921)

    Article  Google Scholar 

  93. J.J. Kirkland, J. Chromatogr. A 1060, 9 (2004)

    Article  CAS  PubMed  Google Scholar 

  94. D.M. Bliesner, K.B. Sentell, Anal. Chem. 65, 1819 (1993)

    Article  CAS  Google Scholar 

  95. J. Hine, P.K. Mookerjee, J. Org. Chem. 40, 292 (1975)

    Article  CAS  Google Scholar 

  96. J.A.V. Butler, C.N. Ramchandani, D.W. Thomson, J. Chem. Soc. (1935). https://doi.org/10.1039/jr9350000280

    Article  Google Scholar 

  97. J.R. Snider, G.A. Dawson, J. Geophys. Res. 90, 3797 (1985)

    Article  CAS  Google Scholar 

  98. M.H. Abraham, J. Pharm. Sci. 83, 1085 (1994)

    Article  CAS  PubMed  Google Scholar 

  99. S. Bonican, B. Buszewski, J. Sep. Sci. 35, 1191 (2012)

    Article  Google Scholar 

  100. A. Ciogli, P. Simone, C. Villani, F. Gasparrini, A. Laganà, D. Capitani, N. Marchetti, L. Pasti, A. Massi, A. Cavazzini, Chem. Eur. J. 20, 8138 (2014)

    Article  CAS  PubMed  Google Scholar 

  101. S. Ohmuro, R. Ishizaki, M. Tsukamoto, S. Nasu, T. Yasui, K. Takada, A. Yuchi, Anal. Sci. 37, 879 (2021)

    Article  CAS  PubMed  Google Scholar 

  102. J. Zhao, P.W. Carr, Anal. Chem. 70, 3619 (1998)

    Article  CAS  PubMed  Google Scholar 

  103. M. Turowski, N. Yamakawa, J. Meller, K. Kimata, T. Ikegami, K. Hosoya, N. Tanaka, E. Thornton, J. Am. Chem. Soc. 125, 13836 (2003)

    Article  CAS  PubMed  Google Scholar 

  104. K. Croes, A. Steffens, D.H. Marchand, L.R. Snyder, J. Chromatogr. A 1098, 123 (2005)

    Article  CAS  PubMed  Google Scholar 

  105. M.R. Euerby, P. Petersson, W. Campbell, W. Roe, J. Chromatogr. A 1154, 138 (2007)

    Article  CAS  PubMed  Google Scholar 

  106. J. Israelachivili, Intermolecular and Surface Forces, 3rd edn. (Academic Press, London, 2011)

    Google Scholar 

  107. M. Kunieda, K. Nakaoka, Y. Liang, C.R. Miranda, A. Ueda, S. Takahashi, H. Okabe, T. Matsuoka, J. Am. Chem. Soc. 132, 18281 (2010)

    Article  CAS  PubMed  Google Scholar 

  108. A.A. Freitas, F.H. Quina, F.A. Carroll, J. Phys. Chem. B 101, 7488 (1997)

    Article  CAS  Google Scholar 

  109. A.H. Demond, A.S. Lindner, Environ. Sci. Technol. 27, 2318 (1993)

    Article  CAS  Google Scholar 

  110. A.M. Zissimos, M.H. Abraham, M.C. Barker, K.J. Box, K.Y. Tam, J. Chem. Soc. Perkin. Trans. 2, 470 (2002)

    Article  Google Scholar 

  111. A. Riddick, W.B. Bunger, Organic Solvents-Physical Properties & Methods of Purification, 2, 3rd edn. (Wiley-Interscience, New York, 1970)

    Google Scholar 

  112. R.L. David, CRC Handbook of Chemistry and Physics, 84th edn. (CRC Press, Boca Raton, FL, 2004)

    Google Scholar 

  113. J.H. Knox, R. Kaliszan, J. Chromatogr. 349, 211 (1985)

    Article  CAS  Google Scholar 

  114. G.C. Benson, O. Kiyohara, J. Solution Chem. 9, 791 (1980)

    Article  CAS  Google Scholar 

  115. N. van Meurs, G. Somsen, J. Solution Chem. 22, 427 (1993)

    Article  Google Scholar 

  116. M.F. Ottaviani, I. Leonardis, A. Cappiello, M. Cangiotti, R. Mazzeo, H. Trufelli, P. Palma, J. Colloid Interface Sci. 352, 512 (2010)

    Article  CAS  PubMed  Google Scholar 

  117. Y. Marcus, J. Phys. Org. Chem. 25, 1072 (2012)

    Article  CAS  Google Scholar 

  118. F. Gritti, J. Chromatogr. A 1410, 90 (2015)

    Article  CAS  PubMed  Google Scholar 

  119. T. Yamaguchi, N. Fukuyama, K. Yoshida, Y. Katayama, Anal. Sci. 38, 409 (2022)

    Article  CAS  PubMed  Google Scholar 

  120. K.J. Tielrooij, N. Garcia-Araez, M. Bonn, H.J. Bakker, Science 328, 1006 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a Grant-in-Aid for Scientific Research No. 25288062 and 19H02741 from Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masami Shibukawa.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibukawa, M. Surface-bubble-modulated liquid chromatography: an experimental strategy for identification of molecular processes of solute retention in reversed-phase separation systems. ANAL. SCI. 39, 791–813 (2023). https://doi.org/10.1007/s44211-023-00291-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00291-y

Keywords

Navigation