Skip to main content
Log in

The syntheses, photophysical properties and pH-sensitive studies of heterocyclic azo dyes bearing coumarin–thiophene–thiazole

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

This study reports the synthesis of two novel thiazolylazo dyes (4 and 5) bearing coumarin–thiophene moiety. UV–Vis spectroscopy was used to investigate the photophysical properties of 4 and 5 in different solvents. The dyes displayed good potential for hydroxide sensing in different mediums. The reversibility was also studied, and it was found that 4 and 5 could be reverted to their original state by adding acid. Furthermore, the acidochromic properties were studied in protic and aprotic media. Both dyes displayed a good acidochromic response in DCM. Moreover, 4 and 5 were investigated for pH sensing, and it was found that both compounds displayed changes in absorption spectra in a basic media. The theoretical calculations were carried out to investigate the deprotonation and protonation mechanisms using density functional theory (DFT). The thermal properties of the dyes were investigated using thermogravimetric analysis (TGA). The results showed good thermal stability up to around 200 °C.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The authors can confirm that all relevant data are included in the article and/or its supplementary information files.

References

  1. Á. Sastre, B. Del Rey, T. Torres, Synthesis of novel unsymmetrically substituted push-pull phthalocyanines. J. Org. Chem. 61, 8591–8597 (1996). https://doi.org/10.1021/jo961018o

    Article  CAS  Google Scholar 

  2. A. Goel, V. Kumar, S.P. Singh, A. Sharma, S. Prakash, C. Singh, R.S. Anand, Non-aggregating solvatochromic bipolar benzo[f]quinolines and benzo[a]acridines for organic electronics. J. Mater. Chem. 22, 14880–14888 (2012). https://doi.org/10.1039/c2jm31052j

    Article  CAS  Google Scholar 

  3. Y. Ohmori, Development of organic light-emitting diodes for electro-optical integrated devices. Laser Photon. Rev. 4, 300–310 (2009). https://doi.org/10.1002/lpor.200810059

    Article  CAS  Google Scholar 

  4. F. Bureš, Fundamental aspects of property tuning in push-pull molecules. RSC Adv. 4, 58826–58851 (2014). https://doi.org/10.1039/c4ra11264d

    Article  Google Scholar 

  5. T. Uchacz, G. Jajko, A. Danel, P. Szlachcic, S. Zapotoczny, Pyrazoline-based colorimetric and fluorescent probe for detection of sulphite. New J. Chem. 43, 874–883 (2019). https://doi.org/10.1039/C8NJ05017A

    Article  CAS  Google Scholar 

  6. A. Uzgören-Baran, E. Keskin, D. Çakmaz, B. Aydiner, D. Ozer, N. Seferoğlu, Z. Seferoğlu, Novel carbazole based hydrazone type light-up chemosensors. J. Mol. Struct. (2022). https://doi.org/10.1016/j.molstruc.2021.131919

    Article  Google Scholar 

  7. X. Jiang, Z. Lu, M. Shangguan, S. Yi, X. Zeng, Y. Zhang, L. Hou, A fluorescence “turn-on” sensor for detecting hydrazine in environment. Microchem. J. (2020). https://doi.org/10.1016/j.microc.2019.104376

    Article  Google Scholar 

  8. D. Çakmaz, A. Özarslan, B. Aydıner, A.B. Eroğlu, N. Seferoğlu, H. Şenöz, Z. Seferoğlu, The novel sensitive and selective chemosensors for determination of multiple analytes. Dye. Pigment. (2020). https://doi.org/10.1016/j.dyepig.2020.108701

    Article  Google Scholar 

  9. M. Sahu, A.K. Manna, G.K. Patra, A dihydrazone based conjugated bis Schiff base chromogenic chemosensor for selectively detecting copper ion. Inorgan. Chim. Acta. 517, 120199 (2021). https://doi.org/10.1016/j.ica.2020.120199

    Article  CAS  Google Scholar 

  10. Q. Wang, H. Lv, F. Ding, Z. Jin, Y. Liu, X. Sun, L. Ye, W. Xu, C. Mu, J. Shen, X. He, Multifunctional chemosensor for tracing Ga(III), hypochlorite and pH change with bioimaging in living cells, Pseudomonas aeruginosa and Zebrafish, Sensors Actuators. B Chem. 345, 130346 (2021). https://doi.org/10.1016/j.snb.2021.130346

    Article  CAS  Google Scholar 

  11. T.S. Aysha, M.S. El-Sedik, M.B.I. Mohamed, S.T. Gaballah, M.M. Kamel, Dual functional colorimetric and turn-off fluorescence probe based on pyrrolinone ester hydrazone dye derivative for Cu2+ monitoring and pH change. Dye. Pigment. 170, 107549 (2019). https://doi.org/10.1016/j.dyepig.2019.107549

    Article  CAS  Google Scholar 

  12. Z. Dikmen, O. Turhan, M. Yaman, V. Bütün, An effective fluorescent optical sensor: thiazolo-thiazole based dye exhibiting anion/cation sensitivities and acidochromism. J. Photochem. Photobiol. A Chem. 419, 113456 (2021). https://doi.org/10.1016/j.jphotochem.2021.113456

    Article  CAS  Google Scholar 

  13. X.-D. Liu, Y. Xu, R. Sun, Y.-J. Xu, J.-M. Lu, J.-F. Ge, A coumarin–indole-based near-infrared ratiometric pH probe for intracellular fluorescence imaging. Analyst. 138, 6542 (2013). https://doi.org/10.1039/c3an01033c

    Article  CAS  PubMed  Google Scholar 

  14. X. Li, X. Gao, W. Shi, H. Ma, Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem. Rev. 114, 590–659 (2014). https://doi.org/10.1021/cr300508p

    Article  CAS  PubMed  Google Scholar 

  15. S. Goswami, A.K. Das, S. Maity, ‘PET’ vs. ‘push–pull’ induced ICT: a remarkable coumarinyl-appended pyrimidine based naked eye colorimetric and fluorimetric sensor for the detection of Hg2+ ions in aqueous media with test trips. Dalt. Trans. 42, 16259 (2013). https://doi.org/10.1039/c3dt52252k

    Article  CAS  Google Scholar 

  16. F.L. Coelho, C.Á. de Braga, G.M. Zanotto, E.S. Gil, L.F. Campo, P.F.B. Gonçalves, F.S. Rodembusch, F.S. da Santos, Low pH optical sensor based on benzothiazole azo dyes, sensors actuators. B Chem. 259, 514–525 (2018). https://doi.org/10.1016/j.snb.2017.12.097

    Article  CAS  Google Scholar 

  17. T. Zhang, L. Sheng, J. Liu, L. Ju, J. Li, Z. Du, W. Zhang, M. Li, S.X.-A. Zhang, Photoinduced proton transfer between photoacid and pH-sensitive dyes: influence factors and application for visible-light-responsive rewritable paper. Adv. Funct. Mater. 28, 1705532 (2018). https://doi.org/10.1002/adfm.201705532

    Article  CAS  Google Scholar 

  18. J. Han, K. Burgess, Fluorescent indicators for intracellular pH. Chem. Rev. 110, 2709–2728 (2010). https://doi.org/10.1021/cr900249z

    Article  CAS  PubMed  Google Scholar 

  19. F. Teoli, S. Lucioli, P. Nota, A. Frattarelli, F. Matteocci, A. Di Carlo, E. Caboni, C. Forni, Role of pH and pigment concentration for natural dye-sensitized solar cells treated with anthocyanin extracts of common fruits. J. Photochem. Photobiol. A Chem. 316, 24–30 (2016). https://doi.org/10.1016/j.jphotochem.2015.10.009

    Article  CAS  Google Scholar 

  20. M.R. Plutino, E. Guido, C. Colleoni, G. Rosace, Effect of GPTMS functionalization on the improvement of the pH-sensitive methyl red photostability, sensors actuators. B Chem. 238, 281–291 (2017). https://doi.org/10.1016/j.snb.2016.07.050

    Article  CAS  Google Scholar 

  21. K. De Wael, A. Adriaens, Comparison between the electrocatalytic properties of different metal ion phthalocyanines and porphyrins towards the oxidation of hydroxide. Talanta 74, 1562–1567 (2008). https://doi.org/10.1016/j.talanta.2007.09.034

    Article  CAS  PubMed  Google Scholar 

  22. A. Abu-Rabi, D. Jašin, S. Mentus, The influence of cathodic pretreatment on the kinetics of hydroxide ion oxidation on polycrystalline gold electrode. J. Electroanal. Chem. 600, 364–368 (2007). https://doi.org/10.1016/j.jelechem.2006.09.009

    Article  CAS  Google Scholar 

  23. S.Y. Gwon, B.A. Rao, H.S. Kim, Y.A. Son, S.H. Kim, Novel styrylbenzothiazolium dye-based sensor for mercury, cyanide and hydroxide ions, spectrochim. Acta Part A Mol. Biomol. Spectrosc. 144, 226–234 (2015). https://doi.org/10.1016/j.saa.2015.02.094

    Article  CAS  Google Scholar 

  24. M. Chemchem, I. Yahaya, B. Aydıner, N. Seferoğlu, O. Doluca, N. Merabet, Z. Seferoğlu, A novel and synthetically facile coumarin-thiophene-derived Schiff base for selective fluorescent detection of cyanide anions in aqueous solution: synthesis, anion interactions, theoretical study and DNA-binding properties. Tetrahedron 74, 6897–6906 (2018). https://doi.org/10.1016/j.tet.2018.10.008

    Article  CAS  Google Scholar 

  25. Y.-A. Son, S.-Y. Gwon, S.-H. Kim, Chromene and imidazole based D-π-A chemosensor preparation and its anion responsive effects. Mol. Cryst. Liq. Cryst. 599, 16–22 (2014). https://doi.org/10.1080/15421406.2014.935913

    Article  CAS  Google Scholar 

  26. H. Hamidian, Synthesis of novel compounds as new potent tyrosinase inhibitors. Biomed. Res. Int. (2013). https://doi.org/10.1155/2013/207181

    Article  PubMed  PubMed Central  Google Scholar 

  27. Infrared Absorbing Dyes—Google Books, (n.d.). https://books.google.com.tr/books?hl=en&lr=&id=0mMFCAAAQBAJ&oi=fnd&pg=PA2&dq=Matsuoka+M.+Infrared+Absorbing+Dyes+2013+Springer+Science+&ots=xgGAD9yRif&sig=Lj4BGn2qT8oPzByGaHrzrk8hXjA&redir_esc=y#v=onepage&q=MatsuokaM. Infrared Absorbing Dyes 2013 Springer Science&f=false. Accessed 24 July 2020

  28. P. Gregory, Modem reprographics. Rev. Prog. Color. Relat. Top. 24, 1–16 (2008). https://doi.org/10.1111/j.1478-4408.1994.tb03763.x

    Article  Google Scholar 

  29. J. Shao, A novel colorimetric and fluorescence anion sensor with a urea group as binding site and a coumarin group as signal unit. Dye. Pigment. 87, 272–276 (2010). https://doi.org/10.1016/j.dyepig.2010.04.007

    Article  CAS  Google Scholar 

  30. O.A. Blackburn, B.J. Coe, Syntheses, electronic structures, and dichroic behavior of dinuclear cyclopalladated complexes of push-pull azobenzenes. Organometallics 30, 2212–2222 (2011). https://doi.org/10.1021/om101189f

    Article  CAS  Google Scholar 

  31. K. Singh, S. Singh, A. Mahajan, J.A. Taylor, Monoazo disperse dyes. Part 3; synthesis and fastness properties of some novel 4,5-disubstituted thiazolyl-2-azo disperse dyes. Color. Technol. 119, 198–204 (2003). https://doi.org/10.1111/j.1478-4408.2003.tb00172.x

    Article  CAS  Google Scholar 

  32. J.-H. Choi, J.-S. Park, M.-H. Kim, H.-Y. Lee, A.D. Towns, Synthesis and spectroscopic properties of novel azo dyes derived from phthalimide. Color. Technol. 123, 379–386 (2007). https://doi.org/10.1111/j.1478-4408.2007.00112.x

    Article  CAS  Google Scholar 

  33. P.G. Umape, V.S. Patil, V.S. Padalkar, K.R. Phatangare, V.D. Gupta, A.B. Thate, N. Sekar, Synthesis and characterization of novel yellow azo dyes from 2-morpholin-4-yl-1,3-thiazol-4(5H)-one and study of their azo-hydrazone tautomerism. Dye. Pigment. 99, 291–298 (2013). https://doi.org/10.1016/j.dyepig.2013.05.002

    Article  CAS  Google Scholar 

  34. T. Aksungur, Ö. Arslan, N. Seferoʇlu, Z. Seferoʇlu, Photophysical and theoretical studies on newly synthesized N,N-diphenylamine based azo dye. J. Mol. Struct. 1099, 543–550 (2015). https://doi.org/10.1016/j.molstruc.2015.07.010

    Article  CAS  Google Scholar 

  35. B. Babür, N. Seferoğlu, M. Öcal, G. Sonugur, H. Akbulut, Z. Seferoğlu, A novel fluorescence turn-on coumarin-pyrazolone based monomethine probe for biothiol detection. Tetrahedron 72, 4498–4502 (2016). https://doi.org/10.1016/j.tet.2016.06.008

    Article  CAS  Google Scholar 

  36. Q. Chen, N. Wu, Y. Liu, X. Li, B. Liu, Twisted coumarin dyes for dye-sensitized solar cells with high photovoltage: adjustment of optical, electrochemical, and photovoltaic properties by the molecular structure. RSC Adv. 6, 87969–87977 (2016). https://doi.org/10.1039/c6ra17930d

    Article  CAS  Google Scholar 

  37. M. Özkütük, E. Ipek, B. Aydiner, S. Mamaş, Z. Seferoğlu, Synthesis, spectroscopic, thermal and electrochemical studies on thiazolyl azo based disperse dyes bearing coumarin. J. Mol. Struct. 1108, 521–532 (2016). https://doi.org/10.1016/j.molstruc.2015.12.032

    Article  CAS  Google Scholar 

  38. A.B. Tathe, N. Sekar, Red emitting NLOphoric 3-styryl coumarins: experimental and computational studies. Opt. Mater. (Amst) 51, 121–127 (2016). https://doi.org/10.1016/j.optmat.2015.11.031

    Article  CAS  Google Scholar 

  39. X. Liu, J.M. Cole, P.G. Waddell, T.-C. Lin, J. Radia, A. Zeidler, Molecular origins of optoelectronic properties in coumarin dyes: toward designer solar cell and laser applications. J. Phys. Chem. A. 116, 727–737 (2012). https://doi.org/10.1021/jp209925y

    Article  CAS  PubMed  Google Scholar 

  40. A.P. Demchenko, Basic principles, in Introd. to Fluoresc. Sens. (Springer International Publishing, Cham, 2015), pp.1–37. https://doi.org/10.1007/978-3-319-20780-3_1

    Chapter  Google Scholar 

  41. R. Sheng, P. Wang, W. Liu, X. Wu, S. Wu, A new colorimetric chemosensor for Hg2+ based on coumarin azine derivative, Sensors Actuators. B Chem. 128, 507–511 (2008). https://doi.org/10.1016/j.snb.2007.07.069

    Article  CAS  Google Scholar 

  42. I. Yahaya, N. Seferoğlu, Z. Seferoğlu, Improved one-pot synthetic conditions for synthesis of functionalized fluorescent coumarin-thiophene hybrids: syntheses, DFT studies, photophysical and thermal properties. Tetrahedron 75, 2143–2154 (2019). https://doi.org/10.1016/j.tet.2019.02.034

    Article  CAS  Google Scholar 

  43. M. Chemchem, I. Yahaya, B. Aydıner, O. Doluca, N. Seferoğlu, Z. Seferoğlu, Substituent dependent selectivity of fluorescent chemosensors derived from coumarin for biologically relevant DNA structures and anions, sensors actuators. B Chem (2020). https://doi.org/10.1016/j.snb.2019.127316

    Article  Google Scholar 

  44. M.E.M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, Gaussian 09, Revision C.01 (Gaussian Inc., Wallingford CT, 2010)

    Google Scholar 

  45. C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785–789 (1988). https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  46. A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993). https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  47. M. Cossi, V. Barone, Time-dependent density functional theory for molecules in liquid solutions. J. Chem. Phys. 115, 4708–4717 (2001). https://doi.org/10.1063/1.1394921

    Article  CAS  Google Scholar 

  48. R. Bauernschmitt, R. Ahlrichs, Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 256, 454–464 (1996). https://doi.org/10.1016/0009-2614(96)00440-X

    Article  CAS  Google Scholar 

  49. N.N. Ayare, S. Sharma, K.K. Sonigara, J. Prasad, S.S. Soni, N. Sekar, Synthesis and computational study of coumarin thiophene-based D-π-A azo bridge colorants for DSSC and NLOphoric application. J. Photochem. Photobiol. A Chem. 394, 112466 (2020). https://doi.org/10.1016/j.jphotochem.2020.112466

    Article  CAS  Google Scholar 

  50. S. Achelle, J. Rodríguez-López, N. Cabon, F.R. Le Guen, Protonable pyrimidine derivative for white light emission. RSC Adv. 5, 107396–107399 (2015). https://doi.org/10.1039/c5ra21514e

    Article  CAS  Google Scholar 

  51. C. Poloni, W. Szymański, L. Hou, W.R. Browne, B.L. Feringa, A. Fast, Visible-light-sensitive azobenzene for bioorthogonal ligation. Chem. A Eur. J. 20, 946–951 (2014). https://doi.org/10.1002/chem.201304129

    Article  CAS  Google Scholar 

  52. V. Schmitt, S. Moschel, H. Detert, Diaryldistyrylpyrazines: solvatochromic and acidochromic fluorophores. Eur. J. Org. Chem. 2013, 5655–5669 (2013). https://doi.org/10.1002/ejoc.201300463

    Article  CAS  Google Scholar 

  53. S.R. Patil, A.S. Choudhary, N. Sekar, Synthesis and optical response to acids and bases of a new styryl—dihydro-benzo[a]phenazine chromophores. Tetrahedron 72, 7968–7974 (2016). https://doi.org/10.1016/j.tet.2016.10.028

    Article  CAS  Google Scholar 

  54. Q. Xu, M. Mori, K. Tanaka, M. Ikedo, W. Hu, P.R. Haddad, Ion chromatographic determination of hydroxide ion on monolithic reversed-phase silica gel columns coated with nonionic and cationic surfactants. J. Chromatogr. A (2004). https://doi.org/10.1016/j.chroma.2004.05.005

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The numerical calculations reported in this paper were fully performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: study conception and design: ZS; data collection: MY, RM; analysis and interpretation of results: BA, NS; draft manuscript preparation: MY, RM, and BA. All the authors reviewed the results and approved the final version of the manuscript.

Corresponding authors

Correspondence to Burcu Aydıner or Zeynel Seferoğlu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4121 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahya, M., Metin, R., Aydıner, B. et al. The syntheses, photophysical properties and pH-sensitive studies of heterocyclic azo dyes bearing coumarin–thiophene–thiazole. ANAL. SCI. 39, 829–842 (2023). https://doi.org/10.1007/s44211-023-00281-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00281-0

Keywords

Navigation