Skip to main content
Log in

Observation of the phase-separation multiphase flow using a polyethylene glycol/phosphate mixed solutions and the aqueous two-phase distribution of red blood cells in the flow system

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Phase-separation multiphase flow at a liquid–liquid interface was successfully formed in an aqueous two-phase system of polyethylene glycol/phosphate mixed solutions when fed into a microchannel (100 µm wide and 40 µm deep) on a microchip and a fused-silica capillary tube (100 µm ID). As one example, tube radial distribution flow (annular flow) was observed when 10.0 wt% polyethylene glycol 6000 and 8.5 wt% dipotassium hydrogen phosphate aqueous solution containing 1.0 mM Rhodamine B was fed at 40 ℃, recorded by bright field microscopy. It exhibited a dipotassium hydrogen phosphate-rich inner phase and polyethylene glycol-rich outer phase. Effects of conditions including composition, flow rate, viscosity, and contact angle on tube radial distribution flow were analyzed. It was found out that although the viscosity of PEG-rich solution was much higher than that of phosphate-rich one, the phase configuration in tube radial distribution flow did not necessarily obey the viscous dissipation law in untreated microchannel and capillary tube, as well as for all the types of PEG/phosphate mixed solution the PEG-rich solution occupied the outer phase near the ODS-treated inner wall of both microchannel and capillary tube against the law. To assess the use of microfluidic flow in applications, we examined the distribution of red blood cells in the inner and outer phases fed into double capillary tubes with different inner diameters. Cell distribution was found to concentrate in the inner (dipotassium hydrogen phosphate-rich) phase compared to the outer (polyethylene glycol-rich) phase at a ratio of 1.8.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability Statement

The microflow system gave a useful clue to develop the separation and extraction of cells and biomolecules in a microspace.

References

  1. H. Tani, T. Kamidate, H. Watanabe, Hiroto, Anal. Sci. 14, 857 (1998). https://doi.org/10.2116/analsci.14.875

    Article  Google Scholar 

  2. M. Van Berlo, M. Ottens, K.C.A.M. Luyben, L.A.M. van der Wielen, J. Chromatogr. B 743, 317 (2000). https://doi.org/10.1016/S0378-4347(00)00173-0

    Article  Google Scholar 

  3. G.D. Rodrigues, L. Rodrigues de Lemos, L.H. Mendes da Silva, M.C. Hespanhol da Silva, Anal. Sci. 28, 1213 (2012). https://doi.org/10.2116/analsci.28.1213

    Article  CAS  PubMed  Google Scholar 

  4. F. Ruiz-Ruiz, J. Benavides, O. Aguilar, M. Rito-Palomares, J. Chromatogr. A 1244, 1 (2012). https://doi.org/10.1016/j.chroma.2012.04.077

    Article  CAS  PubMed  Google Scholar 

  5. A. Hamta, M.R. Dehghani, J. Mol. Liq. 231, 20 (2017). https://doi.org/10.1016/j.molliq.2017.01.084

    Article  CAS  Google Scholar 

  6. J.A. Asenjo, B.A. Andrews, J. Chromatogr. A 1218, 8826 (2011). https://doi.org/10.1016/j.chroma.2011.06.051

    Article  CAS  PubMed  Google Scholar 

  7. S.O. Enfors, K. Koehler, A. Veide, Andres, Bioseparation 1, 305 (1990)

    CAS  PubMed  Google Scholar 

  8. D.F. Colosimo, V.-P.-R. Minim, M.C.T.R. Vidigal, L.A. Minim, L. Antonio, Chem. Eng. Res. Des. 182, 478 (2022). https://doi.org/10.1016/j.cherd.2022.04.012

    Article  CAS  Google Scholar 

  9. R.J. Anderson, C. Delgado, D. Fisher, J.M. Cunningham, G.E. Francis, Anal. Biochem. 193, 101 (1991). https://doi.org/10.1016/0003-2697(91)90048-X

    Article  CAS  PubMed  Google Scholar 

  10. H. Kan, K. Yamada, N. Sanada, K. Nakata, K. Tsukagoshi, Anal. Sci. 34, 239 (2018). https://doi.org/10.2116/analsci.34.239

    Article  CAS  PubMed  Google Scholar 

  11. K. Nagatani, Y. Shihata, T. Matsushita, K. Tsukagoshi, Anal. Sci. 32, 1371 (2016). https://doi.org/10.2116/analsci.32.1371

    Article  CAS  PubMed  Google Scholar 

  12. K. Kitaguchi, N. Hanamura, M. Murata, M. Hashimoto, K. Tsukagoshi, Anal. Sci. 30, 687 (2014). https://doi.org/10.2116/analsci.30.687

    Article  CAS  PubMed  Google Scholar 

  13. M. Murakami, N. Jinno, M. Hashimoto, K. Tsukagoshi, Anal. Sci. 27, 793 (2011). https://doi.org/10.2116/analsci.27.793

    Article  CAS  PubMed  Google Scholar 

  14. N. Jinno, M. Murakami, K. Mizohata, M. Hashimoto, K. Tsukagoshi, Analyst 136, 927 (2011). https://doi.org/10.1039/C0AN00820F

    Article  CAS  PubMed  Google Scholar 

  15. N. Jinno, M. Murakami, K. Mizohata, M. Hashimoto, K. Tsukagoshi, Analyst 135, 927 (2011). https://doi.org/10.1039/C0AN00820F

    Article  Google Scholar 

  16. S. Fujinaga, M. Hashimoto, K. Tsukagoshi, J. Mizushima, J. Chem. Eng. Jpn. 48, 947 (2015). https://doi.org/10.1252/jcej.15we039

    Article  CAS  Google Scholar 

  17. S. Fujinaga, M. Hashimoto, K. Tsukagoshi, J. Mizushima, Anal. Sci. 32, 455 (2016). https://doi.org/10.2116/analsci.32.455

    Article  CAS  PubMed  Google Scholar 

  18. K. Yamada, H. Kan, K. Tsukagoshi, Talanta 189, 89 (2018). https://doi.org/10.1016/j.talanta.2018.02.046

    Article  CAS  Google Scholar 

  19. K. Tsukagoshi, Anal. Sci. 30, 65 (2014). https://doi.org/10.2116/analsci.30.65

    Article  CAS  PubMed  Google Scholar 

  20. K. Tsukagoshi, J. Flow Inject. Anal. 32, 89 (2015)

    CAS  Google Scholar 

  21. K. Tsukagoshi, Bunseki-Kagaku (Review) 71, 25 (2022)

    Article  CAS  Google Scholar 

  22. A. Yoshioka, K. Tsukagoshi, K. Tsuchiya, K. Hirota, K. Yamashita, M. Murata, Anal. Sci. 35, 1279 (2019). https://doi.org/10.2116/analsci.19A001

    Article  CAS  PubMed  Google Scholar 

  23. N. Imanishi, T. Yamasaki, K. Tsukagoshi, M. Murata, Anal. Sci. 34, 953 (2018). https://doi.org/10.2116/analsci.18P105

    Article  CAS  PubMed  Google Scholar 

  24. P.A. Albertsson, Partition of Cell Particles and Macromolecules (Wiley, New York, 1986)

    Google Scholar 

  25. R. Kuboi, H. Tanaka, I. Komasawa, Kogaku Kogaku Ronbunshu 16, 755 (1989). https://doi.org/10.1252/kakoronbunshu.16.755

    Article  Google Scholar 

  26. E. Sumida, Y. Iwasaki, K. Akiyoshi, S. Kasugai, J. Pharmacol. Sci. 101, 91 (2006). https://doi.org/10.1254/jphs.FP0060062

    Article  CAS  PubMed  Google Scholar 

  27. H. Walter, F.W. Selby, J.M. Brake, Biochem. Biophys. Res. Commun. 15, 497 (1964)

    Article  Google Scholar 

  28. H. Walter, R. Winge, F.W. Selby, Biochim. Biophys. Acta 109, 293 (1965)

    Article  CAS  PubMed  Google Scholar 

  29. H. Walter, F.W. Selby, R. Garza, Biochim. Biophys. Acta 136, 148 (1967)

    Article  CAS  PubMed  Google Scholar 

  30. B. Yamawaki, R. Mori, K. Tsukagoshi, K. Tsuchiya, K. Yamashita, M. Murata, Anal. Sci. 35, 249 (2019). https://doi.org/10.2116/analsci.18P393

    Article  CAS  PubMed  Google Scholar 

  31. M.C. Williams, AlChE J. 21, 1204 (1975)

    Article  CAS  Google Scholar 

  32. D.D. Joseph, Y. Renardy, M. Renardy, J. Fluid Mech. 141, 309 (1984)

    Article  Google Scholar 

  33. K. Yamada, N. Jinno, M. Hashimoto, K. Tsukagoshi, Anal. Sci. 26, 507 (2010). https://doi.org/10.2116/analsci.26.507

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (MEXT) (No. 17H03083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Tsukagoshi.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 768 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishimura, K., Matsushita, C., Yamashita, K. et al. Observation of the phase-separation multiphase flow using a polyethylene glycol/phosphate mixed solutions and the aqueous two-phase distribution of red blood cells in the flow system. ANAL. SCI. 39, 537–546 (2023). https://doi.org/10.1007/s44211-022-00259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00259-4

Keywords

Navigation