Abstract
Phase-separation multiphase flow at a liquid–liquid interface was successfully formed in an aqueous two-phase system of polyethylene glycol/phosphate mixed solutions when fed into a microchannel (100 µm wide and 40 µm deep) on a microchip and a fused-silica capillary tube (100 µm ID). As one example, tube radial distribution flow (annular flow) was observed when 10.0 wt% polyethylene glycol 6000 and 8.5 wt% dipotassium hydrogen phosphate aqueous solution containing 1.0 mM Rhodamine B was fed at 40 ℃, recorded by bright field microscopy. It exhibited a dipotassium hydrogen phosphate-rich inner phase and polyethylene glycol-rich outer phase. Effects of conditions including composition, flow rate, viscosity, and contact angle on tube radial distribution flow were analyzed. It was found out that although the viscosity of PEG-rich solution was much higher than that of phosphate-rich one, the phase configuration in tube radial distribution flow did not necessarily obey the viscous dissipation law in untreated microchannel and capillary tube, as well as for all the types of PEG/phosphate mixed solution the PEG-rich solution occupied the outer phase near the ODS-treated inner wall of both microchannel and capillary tube against the law. To assess the use of microfluidic flow in applications, we examined the distribution of red blood cells in the inner and outer phases fed into double capillary tubes with different inner diameters. Cell distribution was found to concentrate in the inner (dipotassium hydrogen phosphate-rich) phase compared to the outer (polyethylene glycol-rich) phase at a ratio of 1.8.
Graphical abstract
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability Statement
The microflow system gave a useful clue to develop the separation and extraction of cells and biomolecules in a microspace.
References
H. Tani, T. Kamidate, H. Watanabe, Hiroto, Anal. Sci. 14, 857 (1998). https://doi.org/10.2116/analsci.14.875
M. Van Berlo, M. Ottens, K.C.A.M. Luyben, L.A.M. van der Wielen, J. Chromatogr. B 743, 317 (2000). https://doi.org/10.1016/S0378-4347(00)00173-0
G.D. Rodrigues, L. Rodrigues de Lemos, L.H. Mendes da Silva, M.C. Hespanhol da Silva, Anal. Sci. 28, 1213 (2012). https://doi.org/10.2116/analsci.28.1213
F. Ruiz-Ruiz, J. Benavides, O. Aguilar, M. Rito-Palomares, J. Chromatogr. A 1244, 1 (2012). https://doi.org/10.1016/j.chroma.2012.04.077
A. Hamta, M.R. Dehghani, J. Mol. Liq. 231, 20 (2017). https://doi.org/10.1016/j.molliq.2017.01.084
J.A. Asenjo, B.A. Andrews, J. Chromatogr. A 1218, 8826 (2011). https://doi.org/10.1016/j.chroma.2011.06.051
S.O. Enfors, K. Koehler, A. Veide, Andres, Bioseparation 1, 305 (1990)
D.F. Colosimo, V.-P.-R. Minim, M.C.T.R. Vidigal, L.A. Minim, L. Antonio, Chem. Eng. Res. Des. 182, 478 (2022). https://doi.org/10.1016/j.cherd.2022.04.012
R.J. Anderson, C. Delgado, D. Fisher, J.M. Cunningham, G.E. Francis, Anal. Biochem. 193, 101 (1991). https://doi.org/10.1016/0003-2697(91)90048-X
H. Kan, K. Yamada, N. Sanada, K. Nakata, K. Tsukagoshi, Anal. Sci. 34, 239 (2018). https://doi.org/10.2116/analsci.34.239
K. Nagatani, Y. Shihata, T. Matsushita, K. Tsukagoshi, Anal. Sci. 32, 1371 (2016). https://doi.org/10.2116/analsci.32.1371
K. Kitaguchi, N. Hanamura, M. Murata, M. Hashimoto, K. Tsukagoshi, Anal. Sci. 30, 687 (2014). https://doi.org/10.2116/analsci.30.687
M. Murakami, N. Jinno, M. Hashimoto, K. Tsukagoshi, Anal. Sci. 27, 793 (2011). https://doi.org/10.2116/analsci.27.793
N. Jinno, M. Murakami, K. Mizohata, M. Hashimoto, K. Tsukagoshi, Analyst 136, 927 (2011). https://doi.org/10.1039/C0AN00820F
N. Jinno, M. Murakami, K. Mizohata, M. Hashimoto, K. Tsukagoshi, Analyst 135, 927 (2011). https://doi.org/10.1039/C0AN00820F
S. Fujinaga, M. Hashimoto, K. Tsukagoshi, J. Mizushima, J. Chem. Eng. Jpn. 48, 947 (2015). https://doi.org/10.1252/jcej.15we039
S. Fujinaga, M. Hashimoto, K. Tsukagoshi, J. Mizushima, Anal. Sci. 32, 455 (2016). https://doi.org/10.2116/analsci.32.455
K. Yamada, H. Kan, K. Tsukagoshi, Talanta 189, 89 (2018). https://doi.org/10.1016/j.talanta.2018.02.046
K. Tsukagoshi, Anal. Sci. 30, 65 (2014). https://doi.org/10.2116/analsci.30.65
K. Tsukagoshi, J. Flow Inject. Anal. 32, 89 (2015)
K. Tsukagoshi, Bunseki-Kagaku (Review) 71, 25 (2022)
A. Yoshioka, K. Tsukagoshi, K. Tsuchiya, K. Hirota, K. Yamashita, M. Murata, Anal. Sci. 35, 1279 (2019). https://doi.org/10.2116/analsci.19A001
N. Imanishi, T. Yamasaki, K. Tsukagoshi, M. Murata, Anal. Sci. 34, 953 (2018). https://doi.org/10.2116/analsci.18P105
P.A. Albertsson, Partition of Cell Particles and Macromolecules (Wiley, New York, 1986)
R. Kuboi, H. Tanaka, I. Komasawa, Kogaku Kogaku Ronbunshu 16, 755 (1989). https://doi.org/10.1252/kakoronbunshu.16.755
E. Sumida, Y. Iwasaki, K. Akiyoshi, S. Kasugai, J. Pharmacol. Sci. 101, 91 (2006). https://doi.org/10.1254/jphs.FP0060062
H. Walter, F.W. Selby, J.M. Brake, Biochem. Biophys. Res. Commun. 15, 497 (1964)
H. Walter, R. Winge, F.W. Selby, Biochim. Biophys. Acta 109, 293 (1965)
H. Walter, F.W. Selby, R. Garza, Biochim. Biophys. Acta 136, 148 (1967)
B. Yamawaki, R. Mori, K. Tsukagoshi, K. Tsuchiya, K. Yamashita, M. Murata, Anal. Sci. 35, 249 (2019). https://doi.org/10.2116/analsci.18P393
M.C. Williams, AlChE J. 21, 1204 (1975)
D.D. Joseph, Y. Renardy, M. Renardy, J. Fluid Mech. 141, 309 (1984)
K. Yamada, N. Jinno, M. Hashimoto, K. Tsukagoshi, Anal. Sci. 26, 507 (2010). https://doi.org/10.2116/analsci.26.507
Acknowledgements
This work was supported by a Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (MEXT) (No. 17H03083).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing financial interest.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Nishimura, K., Matsushita, C., Yamashita, K. et al. Observation of the phase-separation multiphase flow using a polyethylene glycol/phosphate mixed solutions and the aqueous two-phase distribution of red blood cells in the flow system. ANAL. SCI. 39, 537–546 (2023). https://doi.org/10.1007/s44211-022-00259-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s44211-022-00259-4