Skip to main content
Log in

Radioactive isotope separation with 3D-printed flow-based device

  • Special Issue: Original Paper
  • Novel Analytical Approaches towards SDGs
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Radioactive isotope (RI) metals are a new type of tracer for positron emission tomography generated from the target metal by proton irradiation using a cyclotron. The generated metal RIs need to be separated from the target metal rapidly and effectively. In the present study, we developed a 3D-printed flow device to separate metal RIs from target metals. The separation was performed with selective formation of ethylenediaminetetraacetic acid (EDTA) complex based on the difference in formation constants. The RI metal selectively formed a EDTA complex, thus changing its ionic charge in solution. The solution was then introduced into a cation exchange column for selective adsorption of the target metal. The solution with added chelator and controlled pH was introduced into the developed system and automatically separated metal RI from target metals within 14 min. The separation method was applied to separate RI 67Ga from target metal Zn using a mixture of 107 pg L−1 67Ga in 250 mg L−1 Zn2+. The recoveries of 67Ga and Zn were 97% and 100%, respectively. Furthermore, an ultraviolet (UV) radiation reactor was integrated into the system to decompose the EDTA complex and recover the Ga3+ ion. Ga3+ recovery by UV radiation was effective, 87%. The developed system was also successfully applied to the separation of Zr and Y. Therefore, the method and system can be applied to separate other metal RIs from target metals.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. World Health Organization (WHO), https://www.who.int/news-room/fact-sheets/detail/cancer (2022)

  2. W. Vaalburg, P.H. Elsinga, J. Nucl. Med. 45, 695 (2004)

    PubMed  Google Scholar 

  3. M. Brandt, J. Cardinale, M.L. Aulsebrook, G. Gasser, T.L. Mindt, J. Nucl. Med. 59, 1500 (2018)

    Article  CAS  PubMed  Google Scholar 

  4. Z. Tsoodol, M. Aikawa, I. Dagvadorj, T. Khishigjargal, N. Javkhlantugs, Y. Komori, H. Haba, Appl. Radiat. Isot. 159, 109095 (2020)

    Article  CAS  PubMed  Google Scholar 

  5. S. Watanabe, Y. Iida, N. Suzui, T. Katabuchi, S. Ishii, N. Kawachi, H. Hanaoka, S. Watanabe, S. Matsuhashi, K. Endo, N.S. Ishioka, J. Radioanal. Nucl. Chem. 280, 199 (2009)

    Article  CAS  Google Scholar 

  6. H. Watanabe, A. Kawasaki, K. Sano, M. Ono, H. Saji, Bioorg. Med. Chem. 24, 3618 (2016)

    Article  CAS  PubMed  Google Scholar 

  7. M.E. Rodnick, C. Sollert, D. Stark, M. Clark, A. Katsifis, B.G. Hockley, D.C. Parr, J. Frigell, B.D. Henderson, M. Abghari-Gerst, M.R. Piert, M.J. Fulham, S. Eberl, K. Gagnon, P.J.H. Scott, EJNMMI Radiopharm. Chem. 5, 25 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  8. J.P. Holland, Y. Sheh, J.S. Lewis, Nucl. Med. Biol. 36, 729 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Y. Sugo, R. Miyachi, S. Obata, Y. Maruyama, H. Manabe, M. Mori, N.S. Ishioka, K. Toda, S.-I. Ohira, Anal. Chem. 93, 17069 (2021)

    Article  CAS  PubMed  Google Scholar 

  10. Dojinchemical formation constants, https://www.dojindo.co.jp/technical/protocol/log.pdf.

  11. Y. Zhang, S. Ge, J. Yu, TrAC. Trends Anal. Chem. 85, 166 (2016)

    Article  CAS  Google Scholar 

  12. L. Wang, M. Pumera, TrAC. Trends Anal. Chem. 135, 116151 (2021)

    Article  CAS  Google Scholar 

  13. T. Yamashita, T. Muramoto, Anal. Sci. 38, 583 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. R.A. Yamashita, R.M. Carvalho, J.M. Petroni, E.R. Pedão, F.M.R. Guerbas, M.P. Tronchini, V.S. Ferreira, E.I. de Melo, R.A.B. da Silva, B.G. Lucca, Microchem. J. 182, 107853 (2022)

    Article  Google Scholar 

  15. K.B. Anderson, S.Y. Lockwood, R.S. Martin, D.M. Spence, Anal. Chem. 85, 5622 (2013)

    Article  CAS  PubMed  Google Scholar 

  16. J.W. Engle, V. Lopez-Rodriguez, R.E. Gaspar-Carcamo, H.F. Valdovinos, M. Valle-Gonzalez, F. Trejo-Ballado, G.W. Severin, T.E. Barnhart, R.J. Nickles, M.A. Avila-Rodriguez, Appl. Radiat. Isot. 70, 1792 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Y. Zhao, S. Jiang, Y. Bai, X. Huang, B. Xiong, Anal. Sci. 37, 897 (2021)

    Article  CAS  PubMed  Google Scholar 

  18. A. Riddell, P. Kvist, D. Bernin, Rev. Sci. Instrum. 93, 084103 (2022)

    Article  CAS  PubMed  Google Scholar 

  19. R. Zhou, R. Han, M. Bingham, C. O’Rourke, A. Mills, Photochem. Photobiol. Sci. 21, 1585 (2022)

    Article  PubMed  Google Scholar 

  20. S. Waheed, J.M. Cabot, N.P. Macdonald, T. Lewis, R.M. Guijt, B. Paull, M.C. Breadmore, Lab. Chip 16, 1993 (2016)

    Article  CAS  PubMed  Google Scholar 

  21. C. Lu, S.M. Rashinkar, P.K. Dasgupta, Anal. Chem. 82, 1334 (2010)

    Article  CAS  PubMed  Google Scholar 

  22. M.A. Deri, B.M. Zeglis, L.C. Francesconi, J.S. Lewis, Nucl. Med. Biol. 40, 3 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI JP 21H02870 and JP 20H03632.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yumi Sugo, Masanobu Mori or Shin-Ichi Ohira.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 856 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obata, S., Sugo, Y., Manabe, H. et al. Radioactive isotope separation with 3D-printed flow-based device. ANAL. SCI. 39, 671–677 (2023). https://doi.org/10.1007/s44211-022-00254-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00254-9

Keywords

Navigation